Problemstellung
Wir betrachten wie im Buch Lineare zeitinvariante Systeme die unten skizzierte Anordnung, wobei das System sowohl durch die Impulsantwort h(t) als auch durch seinen Frequenzgang H(f) eindeutig beschrieben ist. Der Zusammenhang zwischen diesen beiden Beschreibungsgrößen im Zeit- und Frequenzbereich ist durch die Fouriertransformation gegeben.
Legt man an den Eingang das Signal x(t) an und bezeichnet das Ausgangssignal mit y(t), so liefert die klassische Systemtheorie folgende Aussagen:
- Das Ausgangssignal y(t) ergibt sich aus der Faltung zwischen dem Eingangssignal x(t) und der Impulsantwort h(t):
y(t)=x(t)∗h(t)=∫+∞−∞x(τ)⋅h(t−τ)dτ.
- Diese Gleichung gilt für deterministische und stochastische Signale gleichermaßen.
- Bei deterministischen Signalen geht man meist den Umweg über die Spektralfunktionen. Das Eingangsspektrum X(f) ist die Fouriertransformierte von x(t). Die Multiplikation mit dem Frequenzgang H(f) führt zum Spektrum Y(f). Das Signal y(t) lässt sich daraus durch die Fourierrücktransformation gewinnen.
- Bei stochastischen Signalen versagt diese Vorgehensweise, da dann die Zeitfunktionen x(t) und y(t) nicht für alle Zeiten von –∞ bis +∞ vorhersagbar sind und somit die dazugehörigen Amplitudenspektren X(f) und Y(f) gar nicht existieren. In diesem Fall muss auf die in Kapitel 4.5 definierten Leistungsdichtespektren übergegangen werden.
Amplituden- und Leistungsdichtespektrum (1)
Wir betrachten nun einen ergodischen Zufallsprozess { x(t)}, dessen Autokorrelationsfunktion φx(τ) als bekannt vorausgesetzt wird. Das Leistungsdichtespektrum Φx(f) ist dann über die Fouriertransformation ebenfalls eindeutig bestimmt und es sind folgende Aussagen zutreffend:
- Das Leistungsdichtespektrum Φx(f) kann – ebenso wie die Autokorrelationsfunktion φx(τ) – für jede einzelne Musterfunktion des stationären und ergodischen Zufallsprozesses { x(t)} angegeben werden, auch wenn der spezifische Verlauf von x(t) explizit nicht bekannt ist.
- Das Amplitudenspektrum X(f) ist dagegen undefiniert, da bei Kenntnis der Spektralfunktion X(f) auch die gesamte Zeitfunktion x(t) von –∞ bis +∞ über die Fourierrücktransformation bekannt sein müsste, was eindeutig nicht der Fall sein kann.
- Ist entsprechend der nachfolgenden Skizze ein Zeitausschnitt der endlichen Zeitdauer TM bekannt, so kann für diesen natürlich wieder die Fouriertransformation angewandt werden.
- Zwischen dem Leistungsdichtespektrum Φx(f) des unendlich ausgedehnten Zufallssignals x(t) und dem Amplitudenspektrum XT(f) des begrenzten Zeitausschnittes xT(t) besteht dabei der folgende Zusammenhang:
Φx(f)=limTM→∞1TM⋅|XT(f)|2.
Die Herleitung dieser wichtigen Beziehung folgt im nächsten Abschnitt. Sollten Sie sich für diesen mathematischen Beweis nicht interessieren, so können Sie gerne zum nachfolgenden Abschnitt Leistungsdichtespektrum des Filterausgangssignals springen.
Amplituden- und Leistungsdichtespektrum (2)
Es folgt der Beweis der auf der letzten Seite angegebenen Beziehung Φx(f)=limTM→∞1TM⋅|XT(f)|2.
Beweis: In Kapitel 4.4 wurde die Autokorrelationsfunktion (AKF) eines ergodischen Prozesses mit der Musterfunktion x(t) angegeben: φx(τ)=limTM→∞1TM⋅∫+TM/2−TM/2x(t)⋅x(t+τ)dt. Es ist hier zulässig, die zeitlich unbegrenzte Funktion x(t) durch die auf den Zeitbereich –TM/2 bis +TM/2 begrenzte Funktion xT(t) zu ersetzen. xrmT(t) korrespondiert mit der Spektralfunktion XT(f), und man erhält durch Anwendung des Fourierintegrals und des Verschiebungssatzes: φx(τ)=limTM→∞1TM⋅∫+TM/2−TM/2xT(t)⋅∫+∞−∞XT(f)⋅ej2πf(t+τ)dfdt. Nach Aufspalten des Exponenten und Vertauschen von Zeit- und Frequenzintegral ergibt sich: φx(τ)=limTM→∞1TM⋅∫+∞−∞XT(f)⋅[∫+TM/2−TM/2xT(t)⋅ej2πftdt]⋅ej2πfτdf. Das innere Integral beschreibt das konjugiert–komplexe Spektrum X⋆T(f). Daraus folgt weiter: φx(τ)=limTM→∞1TM⋅∫+∞−∞|XT(f)|2⋅ej2πfτdf. Ein Vergleich mit dem bei Ergodizität stets gültigen Theorem von Wiener und Chintchine, φx(τ)=∫+∞−∞Φx(f)⋅ej2πfτdf, zeigt die Gültigkeit der Beziehung: Φx(f)=limTM→∞1TM⋅|XT(f)|2.
q.e.d.