Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Complementary Gaussian Error Functions

From LNTwww
Revision as of 20:06, 21 March 2023 by Hwang (talk | contribs)

Open Applet in new Tab   Deutsche Version Öffnen


Applet Description


This applet allows the calculation and graphical representation of the (complementary) Gaussian error functions  Q(x)  and  1/2erfc(x), which are of great importance for error probability calculation.

  • Both the abscissa and the function value can be represented either linearly or logarithmically.
  • For both functions an upper bound  (UB)  and a lower bound  (LB)  are given.

Theoretical Background


In the study of digital transmission systems, it is often necessary to determine the probability that a (mean-free) Gaussian distributed random variable  x  with variance  σ^2  exceeds a given value  x_0.  For this probability holds:

{\rm Pr}(x > x_0)={\rm Q}(\frac{x_0}{\sigma}) = 1/2 \cdot {\rm erfc}(\frac{x_0}{\sqrt{2} \cdot \sigma}).

The function {\rm Q}(x )

The function  {\rm Q}(x)  is called the  complementary Gaussian error integral.  The following calculation rule applies:

{\rm Q}(x ) = \frac{1}{\sqrt{2\pi}}\int_{x}^{ +\infty}\hspace{-0.2cm}{\rm e}^{-u^{2}/\hspace{0.05cm} 2}\,{\rm d} u .
  • This integral cannot be solved analytically and must be taken from tables if one does not have this applet available.
  • Specially for larger  x  values  (i.e., for small error probabilities), the bounds given below provide a useful estimate for  {\rm Q}(x), which can also be calculated without tables.
  • An upper bound  \rm (UB)  of this function is:
{\rm Q}_{\rm UB}(x )=\text{Upper Bound }\big [{\rm Q}(x ) \big ] = \frac{ 1}{\sqrt{2\pi}\cdot x}\cdot {\rm e}^{- x^{2}/\hspace{0.05cm}2} > {\rm Q}(x).
  • Correspondingly, for the lower bound  \rm (LB):
{\rm Q}_{\rm LB}(x )=\text{Lower Bound }\big [{\rm Q}(x ) \big ] =\frac{1-1/x^2}{\sqrt{2\pi}\cdot x}\cdot {\rm e}^{-x^ 2/\hspace{0.05cm}2} ={\rm Q}_{\rm UB}(x ) \cdot (1-1/x^2)< {\rm Q}(x).

However, in many program libraries, the function  {\rm Q}(x )  cannot be found.

The function 1/2 \cdot {\rm erfc}(x )

On the other hand, in almost all program libraries, you can find the  Complementary Gaussian Error Function:

{\rm erfc}(x) = \frac{2}{\sqrt{\pi}}\int_{x}^{ +\infty}\hspace{-0.2cm}{\rm e}^{-u^{2}}\,{\rm d} u ,

which is related to  {\rm Q}(x)  as follows:   {\rm Q}(x)=1/2\cdot {\rm erfc}(x/{\sqrt{2}}).

  • Since in almost all applications this function is used with the factor  1/2, in this applet exactly this function was realized:
1/2 \cdot{\rm erfc}(x) = \frac{1}{\sqrt{\pi}}\int_{x}^{ +\infty}\hspace{-0.2cm}{\rm e}^{-u^{2}}\,{\rm d} u .
  • Once again, an upper and lower bound can be specified for this function:
\text{Upper Bound }\big [1/2 \cdot{\rm erfc}(x) \big ] = \frac{ 1}{\sqrt{\pi}\cdot 2x}\cdot {\rm e}^{- x^{2}} ,
\text{Lower Bound }\big [1/2 \cdot{\rm erfc}(x) \big ] = \frac{ {1-1/(2x^2)}}{\sqrt{\pi}\cdot 2x}\cdot {\rm e}^{- x^{2}} .

When which function offers advantages?

\text{Example 1:}  We consider binary baseband transmission. Here, the bit error probability  p_{\rm B} = {\rm Q}({s_0}/{\sigma_d}), where the useful signal can take the values  \pm s_0  and the noise root mean square value  \sigma_d .

It is assumed that tables are available listing the argument of the two Gaussian error functions at distance  0.1.  With  s_0/\sigma_d = 4  one obtains for the bit error probability according to the function  {\rm Q}(x ):

p_{\rm B} = {\rm Q} (4) \approx 0.317 \cdot 10^{-4}\hspace{0.05cm}.

According to the second equation, we get:

p_{\rm B} = {1}/{2} \cdot {\rm erfc} ( {4}/{\sqrt{2} })= {1}/{2} \cdot {\rm erfc} ( 2.828)\approx {1}/{2} \cdot {\rm erfc} ( 2.8)= 0.375 \cdot 10^{-4}\hspace{0.05cm}.
  • The first value is more correct.  In the second method of calculation, one must round or – even better – interpolate, which is very difficult due to the strong nonlinearity of this function.
  • Accordingly, with the given numerical values, {\rm Q}(x )  is more suitable.  However, outside of exercise examples  s_0/\sigma_d  will usually have a "curvilinear" value.  In this case, of course,  {\rm Q}(x)  offers no advantage over  1/2 \cdot{\rm erfc}(x).


\text{Example 2:}  With the energy per bit  (E_{\rm B})  and the noise power density  (N_0)  the bit error probability of Binary Phase Shift Keying  (BPSK) is:

p_{\rm B} = {\rm Q} \left ( \sqrt{ {2 E_{\rm B} }/{N_0} }\right ) = {1}/{2} \cdot { \rm erfc} \left ( \sqrt{ {E_{\rm B} }/{N_0} }\right ) \hspace{0.05cm}.

For the numerical values  E_{\rm B} = 16 \rm mWs  and  N_0 = 1 \rm mW/Hz  we obtain:

p_{\rm B} = {\rm Q} \left (4 \cdot \sqrt{ 2} \right ) = {1}/{2} \cdot {\rm erfc} \left ( 4\right ) \hspace{0.05cm}.
  • The first way leads to the result  p_{\rm B} = {\rm Q} (5.657) \approx {\rm Q} (5.7) = 0.6 \cdot 10^{-8}\hspace{0.01cm}, while   1/2 \cdot{\rm erfc}(x)  here the more correct value  p_{\rm B} \approx 0.771 \cdot 10^{-8}  yields.
  • As in the first example, however, you can see:   The functions  {\rm Q}(x)  and  1/2 \cdot{\rm erfc}(x)  are basically equally well suited.
  • Advantages or disadvantages of one or the other function arise only for concrete numerical values.


Exercises

  • First select the number  (1, 2, \text{...})  of the exercise.  The number  0  corresponds to a "Reset":  Same setting as at program start.
  • A task description is displayed.  The parameter values ​​are adjusted.  Solution after pressing "Show solution".


(1)   Find the values of the function  {\rm Q}(x)  for  x=1x=2x=4  and  x=6.  Interpret the graphs for linear and logarithmic ordinates.

  • The applet returns the values  {\rm Q}(1)=1.5866 \cdot 10^{-1}{\rm Q}(2)=2. 275 \cdot 10^{-2}{\rm Q}(4)=3.1671 \cdot 10^{-5}  and  {\rm Q}(6)=9.8659 \cdot 10^{-10}.
  • With linear ordinate, the values for  x>3  are indistinguishable from the zero line.  More interesting is the plot with logarithmic ordinate.


(2)   Evaluate the two bounds  {\rm UB}(x )=\text{Upper Bound }\big [{\rm Q}(x ) \big ]  and  {\rm LB}(x )=\text{Lower Bound }\big [{\rm Q}(x ) \big ]  for the  {\rm Q}  function.

  • For  x \ge 2  the upper bound is only slightly above  {\rm Q}(x)  and the lower bound is only slightly below  {\rm Q}(x)
  • For example:  {\rm Q}(x=4)=3.1671 \cdot 10^{-5}   ⇒   {\rm LB}(x=4)=3.1366 \cdot 10^{-5},   {\rm UB}(x=4)=3.3458 \cdot 10^{-5}.
  • The upper bound has greater significance for assessing a communications system than "LB",  since this corresponds to a "worst case" consideration.


(3)   Try to use the app to determine  {\rm Q}(x=2 \cdot \sqrt{2} \approx 2.828)  as accurately as possible despite the quantization of the input parameter.

  • The program returns for  x=2.8  the too large result  2.5551 \cdot 10^{-3}  and for  x=2.85  the result  2.186 \cdot 10^{-3}.  The exact value lies in between.
  • But it also holds:  {\rm Q}(x=2 \cdot \sqrt{2})=0.5 \cdot {\rm erfc}(x=2).  This gives the exact value  {\rm Q}(x=2 \cdot \sqrt{2})=2.3389 \cdot 10^{-3}.


(4)   Find the values of the function  0.5 \cdot {\rm erfc}(x)  for  x=1x=2x=3  and  x=4.  Interpret the exact results and the bounds.

  • The applet returns:  0.5 \cdot {\rm erfc}(1)=7.865 \cdot 10^{-2}0.5 \cdot {\rm erfc}(2)=2. 3389 \cdot 10^{-3}0.5 \cdot {\rm erfc}(3)=1.1045 \cdot 10^{-5}  and  0.5 \cdot {\rm erfc}(4)=7.7086 \cdot 10^{-9}.
  • All the above statements about  {\rm Q}(x)  with respect to suitable representation type and upper and lower bounds also apply to the function  0.5 \cdot {\rm erfc}(x).


(5)   The results of  (4)  are now to be converted for the case of a logarithmic abscissa.  The conversion is done according to  \rho\big[{\rm dB}\big ] = 20 \cdot \lg(x).

  • The linear abscissa value  x=1  leads to the logarithmic abscissa value  \rho=0\ \rm dB   ⇒   0. 5 \cdot {\rm erfc}(\rho=0\ {\rm dB})={0.5 \cdot \rm erfc}(x=1)=7.865 \cdot 10^{-2}.
  • Similarly  0.5 \cdot {\rm erfc}(\rho=6.021\ {\rm dB}) =0.5 \cdot {\rm erfc}(x=2)=2. 3389 \cdot 10^{-3},     0.5 \cdot {\rm erfc}(\rho=9.542\ {\rm dB})=0.5 \cdot {\rm erfc}(3)=1.1045 \cdot 10^{-5},   
  • 0.5 \cdot {\rm erfc}(\rho=12.041\ {\rm dB})= 0.5 \cdot {\rm erfc}(4)=7.7086 \cdot 10^{-9}.
  • As per right diagram:  0.5 \cdot {\rm erfc}(\rho=6\ {\rm dB}) =2.3883 \cdot 10^{-3},     0.5 \cdot {\rm erfc}(\rho=9. 5\ {\rm dB}) =1.2109 \cdot 10^{-5},     0.5 \cdot {\rm erfc}(\rho=12\ {\rm dB}) =9.006 \cdot 10^{-9}.


(6)   Find  {\rm Q}(\rho=0\ {\rm dB}){\rm Q}(\rho=5\ {\rm dB})  and  {\rm Q}(\rho=10\ {\rm dB}),  and establish the relationship between linear and logarithmic abscissa.

  • The program returns for logarithmic abscissa  {\rm Q}(\rho=0\ {\rm dB})=1. 5866 \cdot 10^{-1}{\rm Q}(\rho=5\ {\rm dB})=3.7679 \cdot 10^{-2}{\rm Q}(\rho=10\ {\rm dB})=7.827 \cdot 10^{-4}.
  • The conversion is done according to the equation  x=10^{\hspace{0.05cm}0.05\hspace{0.05cm} \cdot\hspace{0.05cm} \rho[{\rm dB}]}.  For  \rho=0\ {\rm dB}  we get  x=1   ⇒   {\rm Q}(\rho=0\ {\rm dB})={\rm Q}(x=1) =1.5866 \cdot 10^{-1}.
  • For  \rho=5\ {\rm dB}  we get  x=1.1778   ⇒   {\rm Q}(\rho=5\ {\rm dB})={\rm Q}(x=1. 778) =3.7679 \cdot 10^{-2}.  From the left diagram:  {\rm Q}(x=1.8) =3.593 \cdot 10^{-2}.
  • For  \rho=10\ {\rm dB}  we get  x=3.162   ⇒   {\rm Q}(\rho=10\ {\rm dB})={\rm Q}(x=3. 162) =7.827 \cdot 10^{-4}.  After "quantization":  {\rm Q}(x=3.15) =8.1635 \cdot 10^{-4}.



Applet Manual


Qfunction bedienung.png

    (A)     Verwendete Gleichungen am Beispiel  {\rm Q}(x)

    (B)     Auswahloption für  {\rm Q}(x)  oder  {\rm 0.5 \cdot erfc}(x)

    (C)     Schranken  {\rm LB}  und  {\rm UB}  werden gezeichnet

    (D)     Auswahl, ob Abszisse linear  \rm (lin)  oder logarithmisch  \rm (log) 

    (E)     Auswahl, ob Ordinate linear  \rm (lin)  oder logarithmisch  \rm (log) 

    (F)     Numerikausgabe am Beispiel  {\rm Q}(x)  bei linearer Abszisse

    (G)     Slidereingabe des Abszissenwertes  x  für lineare Abszisse

    (H)     Slidereingabe des Abszissenwertes  \rho \ \rm [dB]  für logarithmische Abszisse

    (I)     Grafikausgabe der Funktion  {\rm Q}(x)  – hier:  lineare Abszisse

    (J)     Grafikausgabe der Funktion  {\rm 0.5 \cdot erfc}(x)  – hier:  lineare Abszisse

    (K)     Variationsmöglichkeit für die graphischen Darstellungen

\hspace{1.5cm}"+" (Vergrößern),

\hspace{1.5cm} "-" (Verkleinern)

\hspace{1.5cm} "\rm o" (Zurücksetzen)

\hspace{1.5cm} "\leftarrow" (Verschieben nach links), usw.

About the Authors


This interactive calculation tool was designed and implemented at the  Institute for Communications Engineering  at the  Technical University of Munich.

  • The first version was created in 2007 by  Thomas Großer  as part of his diploma thesis with “FlashMX – Actionscript” (Supervisor: Günter Söder).
  • In 2018 the program was redesigned by  Xiaohan Liu  as part of her bachelor thesis  (Supervisor: Tasnád Kernetzky ) via "HTML5".
  • Last revision and English version 2021 by  Carolin Mirschina  in the context of a working student activity. 


The conversion of this applet to HTML 5 was financially supported by  "Studienzuschüsse"  (Faculty EI of the TU Munich).  We thank.


Once again: Open Applet in new Tab


Open Applet in new Tab   Deutsche Version Öffnen