Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Linear Distortions of Periodic Signals

From LNTwww
Revision as of 00:09, 27 March 2023 by Noah (talk | contribs)

Open Applet in a new tab         English Applet with English WIKI description

Applet Description


This applet illustrates the effects of linear distortions (attenuation distortions and phase distortions) with

Meanings of the used signals
  • the input signal x(t)   ⇒   power Px:
x(t)=x1(t)+x2(t)=A1cos(2πf1tφ1)+A2cos(2πf2tφ2),
  • the output signal y(t)   ⇒   power Py:
y(t)=α1x1(tτ1)+α2x2(tτ2),
  • the matched output signal z(t)   ⇒   power Pz:
z(t)=kMy(tτM)+α2x2(tτ2),
  • the difference signal   ε(t)=z(t)x(t)   ⇒   power Pε.


The next block in the model above is Matching: The output signal y(t) is adjusted in amplitude and phase with equal variables kM and τM for all frequencies which means that this is not a frequency-dependent equalization. Using the signal z(t), one can differentiate between:

  • attenuation distortion and frequency–independent attenuation, as well as
  • phase distortion and frequency–independent delay.


The Distortion Power PD is used to measure the strength of the linear distortion and is defined as:

PD=min


Theoretical Background


Distortions refer to generally unwanted alterations of a message signal through a transmission system. Together with the strong stochastic effects (noise, crosstalk, etc.), they are a crucial limitation for the quality and rate of transmission.

Just as the intensity of noise can be assessed through

  • the Noise Power P_{\rm N} and
  • the Signal–to–Noise Ratio (SNR) \rho_{\rm N},


distortions can be quantified through

  • the Distortion Power P_{\rm D} and
  • the Signal–to–Distortion Ratio (SDR)
\rho_{\rm D}=\frac{\rm Signal \ Power}{\rm Distortion \ Power} = \frac{P_x}{P_{\rm D} }.


Linear and Nonlinear Distortions


A distinction is made between linear and nonlinear distortions:

  • Nonlinear distortions occur, if at all times t the nonlinear correlation y = g(x) \ne {\rm const.} \cdot x exists between the signal values x = x(t) at the input and y = y(t) at the output, whereby y = g(x) is defined as the system's nonlinear characteristic. By creating a cosine signal at the input with frequency f_0 the output signal includes f_0, as well as multiple harmonic waves. We conclude that new frequencies arise through nonlinear distortion.
For clarification of nonlinear distortions
Description of a linear system
  • Linear distortions occur, if the transmission channel is characterized by a frequency response H(f) \ne \rm const. Various frequencies are attenuated and delayed differently. Characteristic of this is that although frequencies can disappear (for example, through a low–pass, a high–pass, or a band–pass), no new frequencies can arise.


In this applet only linear distortions are considered.


Description Forms for the Frequency Response


The generally complex valued frequency response can be represented as follows:

H(f) = |H(f)| \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} b(f)} = {\rm e}^{-a(f)}\cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} b(f)}.

This results in the following description variables:

  • The absolute value |H(f)| is called amplitude response and in logarithmic form attenuation function:
a(f) = - \ln |H(f)|\hspace{0.2cm}{\rm in \hspace{0.1cm}Neper \hspace{0.1cm}(Np) } = - 20 \cdot \lg |H(f)|\hspace{0.2cm}{\rm in \hspace{0.1cm}Decibel \hspace{0.1cm}(dB) }.
  • The phase function b(f) indicates the negative frequency–dependent angle of H(f) in the complex plane based on the real axis:
b(f) = - {\rm arc} \hspace{0.1cm}H(f) \hspace{0.2cm}{\rm in \hspace{0.1cm}Radian \hspace{0.1cm}(rad)}.


Low–pass of Order N


Attenuation function a(f) and phase function b(f) of a low–Pass of order N

The frequency response of a realizable low–pass (LP) of order N is:

H(f) = \left [\frac{1}{1 + {\rm j}\cdot f/f_0 }\right ]^N\hspace{0.05cm}.

For example the RC low–pass is a first order low–pass. Consequently we can obtain

  • the attenuation function:
a(f) =N/2 \cdot \ln [1+( f/f_0)^2] \hspace{0.05cm},
  • the phase function:
b(f) =N \cdot \arctan( f/f_0) \hspace{0.05cm},
  • the attenuation factor for the frequency f=f_i:
\alpha_i =|H(f = f_i)| = [1+( f_i/f_0)^2]^{-N/2}
\Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm} y(t)= \alpha_i \cdot A_i\cdot \cos(2\pi f_i t)\hspace{0.05cm},
  • the phase delay for the frequency f=f_i:
\tau_i =\frac{b(f_i)}{2 \pi f_i} = \frac{N \cdot \arctan( f_i/f_0)}{2 \pi f_i}
\Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm} y(t)=A_i\cdot \cos(2\pi f_i (t- \tau_i))\hspace{0.05cm}.


High–pass of Order N


Attenuation function a(f) and phase function b(f) of a high–pass of order N

The frequency response of a realizable high–pass (HP) of order N is:

H(f) = \left [\frac{ {\rm j}\cdot f/f_0 }{1 + {\rm j}\cdot f/f_0 }\right ]^N\hspace{0.05cm}.

For example the LC high-pass is a first order high-pass. Consequently we can obtain

  • the attenuation function:
a(f) =N/2 \cdot \ln [1+( f_0/f)^2] \hspace{0.05cm},
  • the phase function:
b(f) =-N \cdot \arctan( f_0/f) \hspace{0.05cm},
  • the attenuation factor for the frequency f=f_i:
\alpha_i =|H(f = f_i)| = [1+( f_0/f_i)^2]^{-N/2}
\Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm} y(t)= \alpha_i \cdot A_i\cdot \cos(2\pi f_i t)\hspace{0.05cm},
  • the phase delay for the frequency f=f_i:
\tau_i =\frac{b(f_i)}{2\pi f_i} = \frac{-N \cdot \arctan( f_0/f_i)}{2\pi f_i}
\Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm} y(t)=A_i\cdot \cos(2\pi f_i (t- \tau_i))\hspace{0.05cm}.


Phase function b(f) of high–pass and low–pass

\text{Example:}  This graphic shows the phase function b(f) with the cutoff frequency f_0 = 1\ \rm kHz and order N=1

  • of a low–pass (green curve),
  • of a high–pass (violet curve).


The input signal is sinusoidal with frequency f_{\rm S} = 1.25\ {\rm kHz} whereby this signal is only turned on at t=0:

x(t) = \left\{ \begin{array}{l} \hspace{0.75cm}0 \\ \sin(2\pi \cdot f_{\rm S} \cdot t ) \\ \end{array} \right.\quad\begin{array}{l} (t < 0), \\ (t>0). \\ \end{array}

The left graphic shows the signal x(t). The dashed line marks the first zero at t = T_0 = 0.8\ {\rm ms}. The other two graphics show the output signals y_{\rm LP}(t) und y_{\rm HP}(t) of low–pass and high–pass, whereby the change in amplitude was balanced in both cases.

Input signal x(t) (enframed in blue) as well as output signals y_{\rm LP}(t) ⇒   green and y_{\rm HP}(t) ⇒   magenta
  • The first zero of the signal y_{\rm LP}(t) after the low–pass is delayed by \tau_{\rm LP} = 0.9/(2\pi) \cdot T_0 \approx 0.115 \ {\rm ms} compared to the first zero of x(t)   ⇒   marked with green arrow, whereby b_{\rm LP}(f/f_{\rm S} = 0.9 \ {\rm rad}) was considered.
  • In contrast, the phase delay of the high–pass is negative: \tau_{\rm HP} = -0.67/(2\pi) \cdot T_0 \approx -0.085 \ {\rm ms} and therefore the first zero of y_{\rm HP}(t) occurs before the dashed line.
  • Following this transient response, in both cases the zero crossings again come in the raster of the period duration T_0 = 0.8 \ {\rm ms}.


Remark: The shown signals were created using the interactive applet "Causal systems – Laplace transform".

Attenuation and Phase Distortions


Requirements for a non–distorting channel

The adjacent figure shows

  • the even attenuation function a(f)   ⇒   a(-f) = a(f), and
  • the uneven function curve b(f)   ⇒   b(-f) = -b(- f)


of a non–distorting channel. One can see:

  • In a distortion–free system the attenuation function a(f) must be constant betweenf_{\rm U} and f_{\rm O} around the carrier frequency f_{\rm T}, where the input signal exists   ⇒   X(f) \ne 0.
  • From the specified constant attenuation value 6 \ \rm dB follows for the amplitude response |H(f)| = 0.5   ⇒   the signal values of all frequencies are thus halved by the system   ⇒   no attenuation distortions.
  • In addition, in such a system, the phase function b(f) between f_{\rm U} and f_{\rm O} must increase linearly with the frequency. As a result, all frequency components are delayed by the same phase delay τ   ⇒   no phase distortion.
  • The delay τ is fixed by the slope of b(f). The phase function b(f) \equiv 0 would result in a delay–less system   ⇒   τ = 0.


The following summary considers that – in this applet – the input signal is always the sum of two harmonic oscillations,

x(t) = x_1(t) + x_2(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)+A_2\cdot \cos\left(2\pi f_2\cdot t- \varphi_2\right),

and therefore the channel influence is fully described by the attenuation factors \alpha_1 and \alpha_2 as well as the phase delays \tau_1 and \tau_2:

y(t) = \alpha_1 \cdot x_1(t-\tau_1) + \alpha_2 \cdot x_2(t-\tau_2).

\text{Summary:} 

  • A signal y(t) is only distortion–free compared to x(t) if \alpha_1 = \alpha_2= \alpha   and   \tau_1 = \tau_2= \tau   ⇒   y(t) = \alpha \cdot x(t-\tau).
  • Attenuation distortions occur when \alpha_1 \ne \alpha_2. If \alpha_1 \ne \alpha_2 and \tau_1 = \tau_2, then there are exclusively attenuation distortions.
  • Phase distortions occur when \tau_1 \ne \tau_2. If \tau_1 \ne \tau_2 and \alpha_1 = \alpha_2, then there are exclusively phase distortions.



Exercises

Exercises verzerrungen.png
  • First choose an exercise number.
  • An exercise description is displayed.
  • Parameter values are adjusted to the respective exercises.
  • Click "Hide solution" to display the solution.


Number "0" is a "Reset" button:

  • Sets parameters to initial values (when loading the page).
  • Displays a "Reset text" to describe the applet further.


(1)   We consider the parameters A_1 = 0.8\ {\rm V}, \ A_2 = 0.6\ {\rm V}, \ f_1 = 0.5\ {\rm kHz}, \ f_2 = 1.5\ {\rm kHz}, \ \varphi_1 = 90^\circ, \ \varphi_2 = 30^\circ for the input signal x(t).

Calculate the signal's period duration T_0 and power P_x. Can you read the value for P_x off the applet?


\hspace{1.0cm}\Rightarrow\hspace{0.3cm}T_0 = \big [\hspace{-0.1cm}\text{ greatest common divisor }(0.5 \ {\rm kHz}, \ 1.5 \ {\rm kHz})\big ]^{-1}\hspace{0.15cm}\underline{ = 2.0 \ {\rm ms}};

\hspace{1.85cm} P_x = A_1^2/2 + A_2^2/2 \hspace{0.15cm}\underline{= 0.5 \ {\rm V^2}} = P_\varepsilon\text{, if }\hspace{0.15cm}\underline{k_{\rm M} = 0} \ \Rightarrow \ z(t) \equiv 0.

(2)  Vary \varphi_2 between \pm 180^\circ while keeping all other parameters from Exercise (1). How does the value of T_0 and P_x change?


\hspace{1.0cm}\Rightarrow\hspace{0.3cm}\text{No changes:}\hspace{0.2cm}\hspace{0.15cm}\underline{ T_0 = 2.0 \ {\rm ms}; \hspace{0.2cm} P_x = 0.5 \ {\rm V^2}}.

(3)   Vary f_2 between 0 \le f_2 \le 10\ {\rm kHz} while keeping all other parameters from Exercise (1). How does the value of P_x change?


\hspace{1.0cm}\Rightarrow\hspace{0.3cm}\text{No changes if }f_2 \ne 0\text{ and } f_2 \ne f_1\text{:}\hspace{0.3cm} \hspace{0.15cm}\underline{P_x = 0.5 \ {\rm V^2}}\text{.} \hspace{0.2cm} T_0 \text{ changes if }f_2\text{is not a multiple of }f_1.

\hspace{1.85cm}\text{If }f_2 = 0\text{:}\hspace{0.2cm} P_x = A_1^2/2 + A_2^2\hspace{0.15cm}\underline{ = 0.68 \ {\rm V^2}}. \hspace{3cm}

\hspace{1.85cm}\text{If }f_2 = f_1\text{:}\hspace{0.2cm} P_x = [A_1\cos(\varphi_1) + A_2\cos(\varphi_2)]^2/2 + [A_1\sin(\varphi_1) + A_2\sin(\varphi_2)]^2/2 \text{.}

\hspace{1.85cm}\text{With } \varphi_1 = 90^\circ, \ \varphi_2 = 30^\circ\text{:}\hspace{0.3cm}\hspace{0.15cm}\underline{ P_x = 0.74 \ {\rm V^2}}\text{.}

(4)   Keeping the previous input signal x(t), set following parameters

\alpha_1 = \alpha_2 = 0.5, \ \tau_1 = \tau_2 = 0.5\ {\rm ms}, k_{\rm M} = 1 \text{ and } \tau_{\rm M} = 0 .
Are there linear distortions? Calculate the received power P_y and the power P_\varepsilon of the differential signal \varepsilon(t) = z(t) - x(t).


\hspace{1.0cm}\Rightarrow \hspace{0.3cm}\hspace{0.15cm}\underline{ y(t) = 0.5 \cdot x(t- 1\ {\rm ms})}\text{ is only attenuated and delayed, but not distorted.}

\hspace{1.85cm}\text{Received power:}\hspace{0.2cm} P_y = (A_1/2)^2/2 + (A_2/2)^2/2\hspace{0.15cm}\underline{ = 0.125 \ {\rm V^2}}\text{. } P_\varepsilon \text{ is significantly larger:} \hspace{0.1cm} \hspace{0.15cm}\underline{P_\varepsilon = 0.625 \ {\rm V^2}}.

(5)   With the same settings as in Exercise (4), vary the matching parameters k_{\rm M} \text{ and } \tau_{\rm M}. How big is the distortion power P_{\rm D}?


\hspace{1.0cm}\Rightarrow \hspace{0.3cm} P_{\rm D}\text{ is equal to }P_\varepsilon \text{ when using the ideal matching parameters:} \hspace{0.2cm}k_{\rm M} = 2 \text{ and } \tau_{\rm M}=T_0 - 0.5\ {\rm ms} = 1.5\ {\rm ms}

\hspace{1.0cm}\Rightarrow \hspace{0.3cm}z(t) = x(t)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\varepsilon(t) = 0\hspace{0.3cm}\Rightarrow \hspace{0.3cm}P_{\rm D}\hspace{0.15cm}\underline{ = P_\varepsilon = 0} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\text{Neither attenuation nor phase distortion.}

(6)   The channel parameters are now set to: \alpha_1 = 0.5, \hspace{0.15cm}\underline{\alpha_2 = 0.2}, \ \tau_1 = \tau_2 = 0.5\ {\rm ms}. Calculate the distortion power P_{\rm D} and the Signal-to-Distortion ratio (\rm SDR) \ \rho_{\rm D}.


\hspace{1.0cm}\Rightarrow \hspace{0.3cm} P_{\rm D} = P_\varepsilon \text{ when using the best matching parameters:} \hspace{0.2cm}\hspace{0.15cm}\underline{k_{\rm M} = 2.24} \text{ and } \hspace{0.15cm}\underline{\tau_{\rm M} = 1.5\ {\rm ms} }\text{:} \hspace{0.2cm}\hspace{0.15cm}\underline{P_{\rm D} = 0.059 \ {\rm V^2}}.

\hspace{1.85cm}\text{Attenuation distortions only.} \hspace{0.3cm}\text{Signal-to-Distortion-Ratio}\ \hspace{0.15cm}\underline{\rho_{\rm D} = P_x/P_\varepsilon \approx 8.5}.

(7)   The channel parameters are now set to: \alpha_1 = \alpha_2 = 0.5, \ \tau_1 \hspace{0.15cm}\underline{= 2\ {\rm ms} }, \ \tau_2 = 0.5\ {\rm ms}. Calculate the distortion power P_{\rm D} and the the Signal-to-Distortion ratio \rho_{\rm D}.


\hspace{1.0cm}\Rightarrow \hspace{0.3cm} P_{\rm D} = P_\varepsilon \text{when using the best matching parameters:} \hspace{0.2cm}\hspace{0.15cm}\underline{k_{\rm M} = 1.84} \text{ and } \tau_{\rm M}\hspace{0.15cm}\underline{ = 0.15\ {\rm ms} }\text{:} \hspace{0.2cm}\hspace{0.15cm}\underline{P_{\rm D} = 0.071 \ {\rm V^2}}.

\hspace{1.85cm}\text{Phase distortions only.} \hspace{0.3cm}\text{Signal-to-Distortion-Ratio}\ \hspace{0.15cm}\underline{\rho_{\rm D} = P_x/P_\varepsilon \approx 7}.

(8)   The channel parameters are now set to: \hspace{0.15cm}\underline{\alpha_1 = 0.5} , \hspace{0.15cm}\underline{\alpha_2 = 0.2} , \ \hspace{0.15cm}\underline{\tau_1= 0.5\ {\rm ms} }, \ \hspace{0.15cm}\underline{\tau_2 = 0.3\ {\rm ms} }. Are there attenuation distortions? Are there phase distortions? How can y(t) be approximated? Hint: \cos(3x) = 4 \cdot \cos^3(x) - 3\cdot \cos(x).


\hspace{1.0cm}\Rightarrow\hspace{0.3cm} \text{Both attenuation and phase distortions, because }\alpha_1 \ne \alpha_2\text{ and }\tau_1 \ne \tau_2.

\hspace{1.85cm}y(t) = y_1(t) + y_2(t)\ \Rightarrow \ y_1(t) = A_1 \cdot \alpha_1 \cdot \sin[2\pi f_1\ (t- 0.5\ \rm ms)] = -0.4 \ {\rm V} \cdot \cos(2\pi f_1 t)

\hspace{1.85cm} y_2(t) = \alpha_2 \cdot x_2(t- \tau_2) \text{ mit }x_2(t) = A_2 \cdot \cos[2\pi f_2\ (t- 30^\circ)] \approx A_2 \cdot \cos[2\pi f_2\ (t- 1/36 \ \rm ms)]

\hspace{1.85cm} \Rightarrow \ y_2(t) = 0.12 \ {\rm V} \cdot \cos[2\pi f_2\ (t- 0.328 \ {\rm ms})] \approx -0.12 \ { \rm V} \cdot \cos[2\pi f_2t] .

\hspace{1.85cm} \Rightarrow \ y(t) = y_1(t) + y_2(t) \approx -0.4 \ {\rm V} \cdot [\cos(2\pi \cdot f_1\cdot t) + 1/3 \cdot \cos(2\pi \cdot 3 f_1 \cdot t) = -0.533 \ {\rm V} \cdot \cos^3(2\pi f_1 t).

(9)   Using the parameters from Exercise (8), calculate the distortion power P_{\rm D} and the the Signal-to-Distortion ratio \rho_{\rm D}.


\hspace{1.0cm}\text{Best possible adaptation:} \hspace{0.2cm}\hspace{0.15cm}\underline{k_{\rm M} = 1.96} \text{, } \hspace{0.15cm}\underline{\tau_{\rm M} = 1.65\ {\rm ms} }\text{:} \hspace{0.2cm}\hspace{0.15cm}\underline{P_{\rm D} = 0.15 \ {\rm V^2} },\hspace{0.1cm}\hspace{0.15cm}\underline{\rho_{\rm D} = 0.500/0.15 \approx 3.3}.

(10)  Now we set A_2 = 0 and A_1 = 1\ {\rm V}, \ f_1 = 1\ {\rm kHz}, \ \varphi_1 = 0^\circ. The channel is a Low-pass of order 1 \underline{(f_0 = 1\ {\rm kHz})}.
Are there any attenuation and/or phase distortions? Calculate the channel coefficients \alpha_1 and \tau_1.


\hspace{1.0cm}\text{At only one frequency there are neither attenuation nor phase distortions.} \hspace{1.0cm}\text{Attenuation factor for }f_1=f_0\text{ and }N=1\text{: }\alpha_1 =|H(f = f_1)| = [1+( f_1/f_0)^2]^{-N/2} = 2^{-1/2}= 1/\sqrt{2}\hspace{0.15cm}\underline{=0.707}, \hspace{1.0cm}\text{Phase factor for }f_1=f_0\text{ and }N=1\text{: }\tau_1 = N \cdot \arctan( f_1/f_0)/(2 \pi f_1)=\arctan( 1)/(2 \pi f_1) =1/(8f_1) \hspace{0.15cm}\underline{=0.125 \ \rm ms}.

(11)   How do the channel parameters change when using a Low-pass of order 2 compared to a Low-pass of order 1 (f_0 = 1\ {\rm kHz})?


\hspace{1.0cm}\alpha_1 = 0.707^2 = 0.5 and \tau_1 = 2 \cdot 0.125 = 0.25 \ {\rm ms}.

\hspace{1.0cm}\text{The signal }y(t)\text{ is only half as big as }x(t)\text{ and is retarded: The cosine turns into a sine function}.

(12)   What differences arise when using a High-pass of order 2 compared to a Low-pass of order 2 (f_0 = 1\ {\rm kHz})?


\hspace{1.0cm}\text{Since }f_1 = f_0\text{ the attenuation factor }\alpha_1 = 0.5\text{ stays the same and }\tau_1 = -0.25 \ {\rm ms}\text{ which means:}

\hspace{1.0cm}\text{The signal }y(t)\text{ is also only half as big as }x(t)\text{ and precedes it: The cosine turns into the Minus–sine function}.

(13)   What differences at the signal y(t) can be observed between the Low-pass and the High-pass of order 2 (f_0 = 1\ {\rm kHz}) when you start with the initial input signal according to Exercise (1) and continuously raise f_2 up to 10 \ \rm kHz ?


\hspace{1.0cm}\text{With the Low-pass the second term is increasingly suppressed. For }f_2 = 10 \ {\rm kHz}\text{: }y_{\rm LP}(t) \approx 0.8 \cdot x_1(t-0.3 \ \rm ms).

\hspace{1.0cm}\text{With the High-pass however the second term dominates. For }f_2 = 10 \ {\rm kHz}\text{: }y_{\rm HP}(t) \approx 0.2 \cdot x_1(t+0.7 \ {\rm ms}) + x_2(t).

Applet Manual

Handhabung verzerrungen.png


    (A)     Parameter selection for input signal x(t) per slider: Amplitude, frequency, phase values

    (B)     Preselection for channel parameters per slider: Low-pass or High-pass

    (C)     Selction of channel parameters per slider: Dämpfungsfaktoren und Phasenlaufzeiten

    (D)     Selection of channel parameters for High and Low pass: Ordern, cutoff frequency f_0

    (E)     Selection of matching parameters k_{\rm M} and \varphi_{\rm M}

    (F)     Selection of the signals to be displayed: x(t), y(t), z(t), \varepsilon(t), \varepsilon^2(t)

    (G)     Graphic display of the signals

    (H)     Enter the time t_* for the numeric output

    ( I )     numeric output of the signal values x(t_*), y(t_*), z(t_*) and \varepsilon(t_*)

    (J)     Numeric output of the main result P_\varepsilon

    (K)     Save and reall parameters

    (L)     Exercises: Exercise selection, description and solution

    (M)     Variation possibilities for the graphic display

\hspace{1.5cm}Zoom–functions "+" (scale up), "-" (scale down) und \rm o (reset)

\hspace{1.5cm}Move with "\leftarrow" (section to the left, ordinate to the right), "\uparrow" "\downarrow" und "\rightarrow"

\hspace{1.5cm}'Other options:

\hspace{1.5cm}Hold shift and scroll: Zoom in on/out of coordinate system,

\hspace{1.5cm}Hold shift and left click: Move the coordinate system.

About the Authors

This interactive calculation was designed and realized at the Lehrstuhl für Nachrichtentechnik of the Technische Universität München.

  • The original version was created in 2005 by Bettina Hirner as part of her Diploma thesis using "FlashMX–Actionscript" (Supervisor: Günter Söder ).
  • In 2018 this Applet was redesigned and updated to "HTML5" by Jimmy He as part of his Bachelor's thesis (Supervisor: Tasnád Kernetzky) .

Once again: Open Applet in new Tab

Open Applet in new Tab         English Applet with German WIKI description