Augenblicksfrequenz (1)
Wir gehen wieder von einem winkelmodulierten Signal aus: $$s(t) = A_{\rm T} \cdot \cos (\psi(t)).$$ Alle Informationen über das Quellensignal $q(t)$ sind damit ausschließlich in der Winkelfunktion $ψ(t)$ enthalten, während die Hüllkurve $a(t) = A_{\rm T}$ konstant ist.
Die Augenblickskreisfrequenz ist die Ableitung der Winkelfunktion nach der Zeit: $$\omega_{\rm A}(t) = \frac{{\rm d}\hspace{0.03cm}\psi(t)}{{\rm d}t}\hspace{0.05cm}.$$ Entsprechend gilt für die Augenblicksfrequenz: $$f_{\rm A}(t) = \frac{\omega_{\rm A}(t)}{2\pi} = \frac{1}{2\pi} \cdot \frac{{\rm d}\hspace{0.03cm}\psi(t)}{{\rm d}t}\hspace{0.05cm}.$$
Bei einer Winkelmodulation mit der Trägerfrequenz $f_{\rm T}$ schwankt die Augenblicksfrequenz zwischen
$$f_{\rm T} - \Delta f_{\rm A} \le f_{\rm A}(t) \le f_{\rm T} + \Delta f_{\rm A}\hspace{0.05cm}.$$
Dabei bezeichnet man die maximale Abweichung $Δf_{\rm A}$ der zeitabhängigen Augenblicksfrequenz $f_{\rm A}(t)$ von der konstanten Trägerfrequenz fT als den Frequenzhub.
Hervorzuheben ist, dass ein grundsätzlicher Unterschied zwischen der Augenblicksfrequenz und dem mit einem Spektrum–Analyzer messbaren Spektrum eines winkelmodulierten Signals besteht, wie das nachfolgende Beispiel verdeutlichen soll.