Exercise 4.3: Operational Attenuation
From LNTwww
- Wird eine Nachrichtenverbindung der Länge l nicht an beiden Enden mit ihrem Wellenwiderstand ZW abgeschlossen, so kommt es stets zu Reflexionen. Anstelle der Wellendämpfung aW(f) = α(f) · l muss man in diesem Fall die Betriebsdämpfung aB(f) betrachten, die hier ohne Frequenzabhängigkeit angegeben wird (das heißt: wir betrachten hier stets nur eine einzige Frequenz f0):
- $${\rm a}_{\rm B} = {\rm a}_{\rm B}(f_0)= {\rm a}_{\rm W}+ {\rm ln}\hspace{0.1cm} |q_1|+{\rm ln}\hspace{0.1cm} |q_2|+{\rm a}_{\rm WWD}\hspace{0.05cm}.$$
- Die vier Anteile – alle mit der Pseudoeinheit „Neper (Np)” – beschreiben dabei folgende Sachverhalte:
- Der erste Summand aW = α · l modelliert die Wellendämpfung der sich entlang der Leitung ausbreitenden Welle. Beachten Sie, dass Dämpfungen mit „a” bezeichnet werden, während das Dämpfungsmaß (kilometrische Dämpfung) mit „alpha” gekennzeichnet sind.
- Der zweite Summand gibt die senderseitige Stoßdämpfung an. Dieser Term berücksichtigt den Leistungsverlust durch Reflexionen am Übergang Sender–Leitung:
- $${\rm ln}\hspace{0.1cm} |q_1|= {\rm ln}\hspace{0.1cm}\frac {R_1 + Z_{\rm W}}{2 \cdot \sqrt{R_1 \cdot Z_{\rm W}}} \hspace{0.05cm}.$$
- In analoger Weise gilt für die empfängerseitige Stoßdämpfung am Leitungsende:
- $${\rm ln}\hspace{0.1cm} |q_2|= {\rm ln}\hspace{0.1cm}\frac {R_2 + Z_{\rm W}}{2 \cdot \sqrt{R_2 \cdot Z_{\rm W}}} \hspace{0.05cm}.$$
- Die Wechselwirkungsdämpfung beschreibt die Signaldämpfung durch die Auswirkung einer doppelt reflektierten Welle, die sich dem Nutzsignal konstruktiv oder destruktiv überlagern kann. Für diesen letzten Anteil
- $${\rm a}_{\rm WWD} = {\rm ln}\hspace{0.1cm} |1- r_1 \cdot r_2 \cdot {\rm e}^{- 2\hspace{0.05cm}\cdot\hspace{0.05cm} \gamma \hspace{0.05cm}\cdot\hspace{0.05cm} l}|$$
- verwenden wir in dieser Aufgabe folgende Gleichungen und Nomenklatur:
- $${\rm a}_{\rm WWD} = {\rm ln}\hspace{0.1cm}A, \hspace{0.3cm}A = |1- r_\alpha \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm} 2 \hspace{0.05cm}\cdot\hspace{0.05cm} \beta \hspace{0.05cm}\cdot\hspace{0.05cm} l}| \hspace{0.05cm},$$
- $$r_\alpha = r_1 \cdot r_2\cdot {\rm e}^{-2 \hspace{0.05cm}\cdot\hspace{0.05cm} \alpha \hspace{0.05cm}\cdot\hspace{0.05cm} l},\hspace{0.3cm}r_1= \frac {R_1 - Z_{\rm W}}{R_1 + Z_{\rm W}}, \hspace{0.3cm}r_2= \frac {R_2 - Z_{\rm W}}{R_2 + Z_{\rm W}} \hspace{0.05cm}.$$
- Hinweis: Die Aufgabe bezieht sich auf die Seite Einfluss von Reflexionen im Kapitel 4.1. Gehen Sie bei numerischen Berechnungen von folgenden Zahlenwerten aus:
- $$Z_{\rm W} = 100\,{\rm \Omega}\hspace{0.05cm},\hspace{0.3cm}R_1 = 200\,{\rm \Omega}\hspace{0.05cm},\hspace{0.3cm} R_2 = 1\,{\rm k\Omega}\hspace{0.05cm},\hspace{0.3cm}l = 2\,{\rm km}\hspace{0.05cm},\hspace{0.3cm} \alpha = 0.1\,{\rm Np/km} \hspace{0.05cm}.$$
Fragebogen
Musterlösung
- 1. Bei Widerstandsanpassung (R1 = R2 = ZW) verbleibt von den vier Summanden nur der erste:
- $${\rm a}_{\rm B} = \alpha \cdot l = 0.1\,{\rm Np/km} \cdot 2\,{\rm km} \hspace{0.15cm}\underline{= 0.2\,{\rm Np}}\hspace{0.05cm}.$$
- 2. Entsprechend den angegebenen Gleichungen ergibt sich:
- $$q_1 = \frac {R_1 + Z_{\rm W}}{2 \cdot \sqrt{R_1 \cdot Z_{\rm W}}}= \frac {200 + 100}{2 \cdot \sqrt{200 \cdot 100}}= 1.061 \hspace{0.2cm}\Rightarrow \hspace{0.2cm} {\rm ln}\hspace{0.1cm}|q_1| \hspace{0.15cm}\underline{= 0.059 \,{\rm Np}} \hspace{0.05cm},\\ q_2 = \frac {R_2 + Z_{\rm W}}{2 \cdot \sqrt{R_2 \cdot Z_{\rm W}}}= \frac {1000 + 100}{2 \cdot \sqrt{1000 \cdot 100}}= 1.739 \hspace{0.2cm}\Rightarrow \hspace{0.2cm} {\rm ln}\hspace{0.1cm}|q_2| \hspace{0.15cm}\underline{= 0.553 \,{\rm Np}}\hspace{0.05cm}.$$
- 3. Mit den vorgegebenen Beschaltungswiderständen erhält man
- $$r_1= \frac {200\,{\rm \Omega} - 100\,{\rm \Omega}}{200\,{\rm \Omega} + 100\,{\rm \Omega}} \hspace{0.15cm}\underline{= 0.333}\hspace{0.05cm}, \hspace{0.3cm}\frac {1000\,{\rm \Omega} - 100\,{\rm \Omega}}{1000\,{\rm \Omega} + 100\,{\rm \Omega}}\hspace{0.15cm}\underline{ = 0.818}$$
- $$\Rightarrow \hspace{0.3cm} r_\alpha = r_1 \cdot r_2\cdot {\rm e}^{-2 \hspace{0.05cm}\cdot\hspace{0.05cm} \alpha \hspace{0.05cm}\cdot\hspace{0.05cm} l}= 0.333 \cdot 0.818\cdot {\rm e}^{-4}\hspace{0.15cm}\underline{= 0.183} \hspace{0.05cm}.$$
- 4. Beide Aussagen sind richtig: Bei konstruktiver Überlagerung ist aWWD = ln A negativ ⇒ A < 1 und minimal. Im Gegensatz dazu bewirkt der maximale Wert von A (für den A > 1 gilt) eine positive Wechselwirkungsdämpfung, also eine zusätzliche Dämpfung des Nutzsignals aufgrund der destruktiven Überlagerung von hin– und rücklaufender Welle.
- 5. In der letzten Teilaufgabe wurde gezeigt, dass konstruktive Überlagerung gleichbedeutend ist mit der Minimierung von
- $$A = |1- r_\alpha \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm} 2\hspace{0.05cm}\cdot\hspace{0.05cm} \beta \hspace{0.05cm}\cdot\hspace{0.05cm} l}|= |1- r_\alpha \cdot \cos(2 \beta l)+ {\rm j} \cdot \sin(2 \beta l)|=\\ = \sqrt {1- 2 \cdot r_\alpha \cdot \cos(2 \beta l)+ {r_\alpha}^2 \cdot \cos^2(2 \beta l)+ {r_\alpha}^2 \cdot \sin^2(2 \beta l)}=\\ = \sqrt {1+ {r_\alpha}^2- 2 \cdot r_\alpha \cdot \cos(2 \beta l)} \hspace{0.05cm}.$$
- Das Minimum ergibt sich für
- $$\cos(2 \beta l) = +1 \hspace{0.2cm}\Rightarrow \hspace{0.2cm}2 \beta l= \pi, 2\pi, 3\pi, ... \hspace{0.2cm}\Rightarrow \hspace{0.2cm}\beta_{\rm min} = \frac{\pi}{2l}\hspace{0.15cm}\underline{= 0.785\,{\rm rad/km}} \hspace{0.05cm}.$$
- Dagegen kommt es zu destruktiver Überlagerung, falls das Phasenmaß folgende Bedingung erfüllt:
- $$\cos(2 \beta l) = -1 \hspace{0.2cm}\Rightarrow \hspace{0.2cm}2 \beta l= \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, ...$$
- 6. Das Argument
- $$A = \sqrt {1+ {r_\alpha}^2- 2 \cdot r_\alpha \cdot \cos(2 \beta l)}$$
- kann maximal A = 2 ⇒ aWWD = 0.693 Np werden unter folgenden Voraussetzungen:
- nicht abgeschlossene Leitung (r1 = r2 = 1),
- kurze Kabellänge, so dass der Term α · l nicht wirksam ist (rα = 1),
- Phasenverlauf entsprechend Teilaufgabe 5).