Processing math: 100%

Fourier Series

From LNTwww


Allgemeine Beschreibung

Jede periodische Funktion x(t) kann in allen Bereichen, in denen sie stetig ist oder nur endlich viele Sprungstellen aufweist, in eine trigonometrische Reihe entwickelt werden, die man als Fourierreihe bezeichnet.

Die Fourierreihe eines periodischen Signals x(t) lautet wie folgt:

x(t)=A0+n=1Ancos(nω0t)+n=1Bnsin(nω0t).

Hierbei bezeichnen:

  • A0 den Gleichanteil von x(t),
  • An die Cosinuskoeffizienten mit n1,
  • Bn die Sinuskoeffizienten mit n1,
  • ω0=2π/T0 die Grundkreisfrequenz des periodischen Signals (T0 ist die Periodendauer).


Soll die Fourierreihe mit dem tatsächlichen periodischen Signal x(t) exakt übereinstimmen, so müssen im Allgemeinen unendlich viele Cosinus– und Sinuskoeffizienten zur Berechnung herangezogen werden.

Bricht man die Fourierreihe ab und verwendet jeweils nur N dieser Koeffizienten An und Bn, so ergibt sich bis auf einige Sonderfälle ein etwas anderer Funktionsverlauf:

xN(t)=A0+Nn=1Ancos(nω0t)+Nn=1Bnsin(nω0t).

Zwischen dem periodischen Signal x(t) und der Fourierreihenapproximation xN(t) gilt der Zusammenhang:

x(t)=limNxN(t).

Ist Nf0 die höchste im Signal x(t) vorkommende Frequenz, so gilt natürlich xN(t)=x(t).


Wir betrachten zwei periodische Rechtecksignale, jeweils mit der Periodendauer T0 und der Grundkreisfrequenz ω0=2π/T0.

  • Für das oben skizzierte gerade Zeitsignal gilt xg(t)=xg(t).
  • Dagegen ist die unten dargestellte Funktion ungerade: xu(t)=xu(t).


Gerades und ungerades Rechtecksignal

In Formelsammlungen findet man die Fourierreihendarstellungen beider Signale:

xg(t)=4π[cos(ω0t)13cos(3ω0t)+15cos(5ω0t)+],

xu(t)=4π[sin(ω0t)+13sin(3ω0t)+15sin(5ω0t)++].

Wegen der allgemeingültigen Beziehung

113+1517+19+=π4

ergeben sich die Amplituden (Maximalwerte) der beiden Rechtecksignale jeweils zu 1. Dies lässt sich auch anhand der Signalverläufe in der obigen Grafik verifizieren:

xg(t=0)=xu(t=T0/4)=1.


Berechnung der Fourierkoeffizienten

Der Fourierkoeffizient A0 gibt den Gleichanteil an, der durch Mittelung über den Signalverlauf x(t) bestimmt werden kann. Aufgrund der Periodizität genügt die Mittelung über eine Periode:

A0=1T0+T0/2T0/2x(t)dt.

Der Integrationsbereich kann aber auch von t=0 bis t=T0 (oder über eine anders festgelegte gleich lange Periode) gewählt werden.

Die Bestimmung der Fourierkoeffizienten An und Bn (n1) beruht auf der Eigenschaft, dass die harmonischen Cosinusfunktionen und Sinusfunktionen so genannte Orthogonalfunktionen sind. Für diese gilt+T0/2T0/2cos(nω0t)cos(mω0t)dt={T0/20fallsm=n,sonst

+T0/2T0/2sin(nω0t)sin(mω0t)dt={T0/20fallsm=n,sonst

+T0/2T0/2cos(nω0t)sin(mω0t)dt=0f¨urallem,n.

Berücksichtigt man diese Gleichungen, so ergeben sich für die Cosinuskoeffizienten An und die Sinuskoeffizienten Bn:

An=2T0+T0/2T0/2x(t)cos(nω0t)dt,

Bn=2T0+T0/2T0/2x(t)sin(nω0t)dt.

Das Lernvideo Zur Berechnung der Fourierkoeffizienten (Dauer 3:50) verdeutlichung diese Gleichungen.


Zur Berechnung der Fourierkoeffizienten

Wir betrachten die gezeichnete periodische Zeitfunktion

x(t)=0.4+0.6cos(ω0t)0.3sin(3ω0t).

Da das Integral der Cosinus– und der Sinusfunktion über jeweils eine Periode identisch 0 ist, erhält man für den Gleichsignalkoeffizienten A0=0.4.

Die Bestimmungsgleichung für den Cosinuskoeffizienten A1 lautet (Integration von t=0 bis t=T0):

A1=2T0T000.4cos(ω0t)dt+2T0T000.6cos2(ω0t)dt2T0T000.3sin(3ω0t)cos(ω0t)dt.

Das letzte Integral ist aufgrund der Orthogonalität gleich 0; das erste ist ebenfalls 0. Nur der mittlere Term liefert hier einen Beitrag zu A1, nämlich 2·0.6·0.5=0.6.Bei allen weiteren (n2) Cosinuskoeffizienten liefern alle drei Integrale den Wert 0, und es gilt somit stets An1=0.

Die Bestimmungsgleichungen für die Sinuskoeffizienten Bn lauten entsprechend:

Bn=2T0T000.4sin(n ω0t)dt+2T0T000.6cos(ω0t)sin(nω0t)dt2T0T000.3sin(3ω0t)sin(nω0t)dt.

Für n3 sind alle drei Integralwerte gleich 0 und damit gilt auch Bn3=0. Dagegen liefert für n=3 das letzte Integral einen Beitrag, und man erhält für den Sinuskoeffizienten B3=0.3.


Ausnutzung von Symmetrieeigenschaften

Einige Erkenntnisse über die zu erwartenden Fourierkoeffizienten An und Bn lassen sich bereits aus den Symmetrieeigenschaften der Zeitfunktion x(t) ablesen.

  • Ist das Zeitsignal x(t) eine gerade Funktion   ⇒   achsensymmetrisch um die Ordinate (t=0), so verschwinden alle Sinuskoeffizienten Bn, da die Sinusfunktion selbst eine ungerade Funktion   ⇒   sin(α)=sin(α) ist:
Bn=0(n=1,2,3,...).
  • Eine ungerade Funktion x(t) ist punktsymmetrisch um den Koordinatenursprung (t=0; x=0). Deshalb verschwinden hier alle Cosinuskoeffizienten (An=0), da die Cosinusfunktion selbst gerade ist. In diesem Fall ist auch der Gleichanteil A0 stets 0.
An=0(n=0,1,2,3,...).
  • Liegt eine Funktion ohne Gleichanteil vor (A0=0) und ist diese innerhalb einer Periode ungerade   ⇒   es gilt x(t)=x(tT0/2), so sind in der Fourierreihendarstellung nur ungerade Vielfache der Grundfrequenz vorhanden. Für die Koeffizienten mit geradzahligem Index gilt dagegen stets:
An=Bn=0(n=2,4,6,...).
  • Sind alle Koeffizienten An und Bn mit geradzahligem Index (n=2,4,...) gleich 0 und der Koeffizient A00, so bezieht sich die im letzten Punkt genannte Symmetrieeigenschaft auf den Gleichsignalanteil, und es gilt:
x(t)=2A0x(tT0/2).

Anmerkung: Es können auch mehrere dieser Symmetrieeigenschaften gleichzeitig erfüllt sein.

Die Symmetrieeigenschaften der Fourierkoeffizienten werden im ersten Teil des nachfolgenden Videos zusammenfassend dargestellt: Eigenschaften und Genauigkeit der Fourierreihe (Dauer Teil 1: 3:31 – Teil 2: 8:39)

Symmetrieeigenschaften der Fourierkoeffizienten

Die oben genannten Eigenschaften werden nun an drei Signalverläufen verdeutlicht.

  • x1(t) ist eine gerade und mittelwertbehaftete Funktion, die dementsprechend ausschließlich durch Cosinuskoeffizienten An bestimmt ist (Bn = 0).
  • Dagegen sind bei der ungeraden Funktion x2(t) alle An (n0) identisch 0.
  • Auch die ungerade Funktion x3(t) beinhaltet nur Sinuskoeffizienten, aber wegen x3(t)=x3(tT0/2) ausschließlich für ungeradzahlige Werte von n.


Komplexe Fourierreihe

Wie auf der Seite X im Kapitel 2.3 für den Fall einer harmonischen Schwingung bereits gezeigt wurde, kann man jedes beliebige periodische Signal

X

x(t)=A0+n=1Ancos(nω0t)+n=1Bnsin(nω0t)

auch mit Hilfe der Betrags- und Phasenkoeffizienten darstellen:

x(t)=C0+n=1Cncos(nω0tφn).

Diese modifizierten Fourierkoeffizienten weisen folgende Eigenschaften auf:

  • Der Gleichsignalkoeffizient C0 ist identisch mit A0.
  • Die Betragskoeffizienten lauten: Cn=(A2n+B2n)1/2).
  • Für die Phasenkoeffizienten gilt: ϕn = arctan (Bn/An).


Mit der Eulerschen Beziehung cos(x) + j \cdot sin(x) = \text{e}^{jx} erhält man eine zweite Darstellungsvariante der Fourierreihenentwicklung, die von der komplexen Exponentialfunktion ausgeht.

Die komplexe Fourierreihe eines periodischen Signals x(t) lautet wie folgt:

x(t)=+n=Dnejnω0t.


Hier bezeichnen Dn die komplexen Fourierkoeffizienten, die sich aus den Cosinuskoeffizienten An und den Sinuskoeffizienten Bn oder auch aus den Betragskoeffizienten Cn sowie den Phasenkoeffizienten ϕn wie folgt berechnen lassen (gültig für n0):

Dn=1/2(AnjBn)=1/2Cnejφn.

Die komplexen Fourierkoeffizienten kann man nach folgender Gleichung auch direkt berechnen:

Dn=1T0+T0/2T0/2x(t)ejnω0tdt.

Solange das Integrationsintervall T0 erhalten bleibt, kann dieses ebenso wie bei den Koeffizienten An und Bn beliebig verschoben werden, zum Beispiel von 0 bis T0. Der Koeffizient D0 = A0 ist stets reell. Für die komplexen Koeffizienten mit negativem Laufindex (n<0) gilt:

Dn=Dn=1/2(An+jBn).


Spektrum eines periodischen Signals

Ausgehend von der gerade abgeleiteten komplexen Fourierreihe

x(t)=+n=Dnejnω0t

und dem bereits in Kapitel 2.3 benutzten Verschiebungssatz erhält man für das Spektrum eines periodischen Signals x(t):

X(f)=+n=Dnδ(fnf0).

Dies bedeutet:

  • Das Spektrum eines mit T0 periodischen Signals ist ein Linienspektrum bei ganzzahligen Vielfachen der Grundfrequenz f0=1/T0.
  • Der Gleichanteil liefert eine Diracfunktion bei f=0 mit dem Impulsgewicht A0.
  • Daneben gibt es Diracfunktionen δ(f±nf0) bei Vielfachen von f0, wobei δ(fnf0) eine Diracfunktion bei f=nf0 (also im positiven Frequenzbereich) und δ(fnf0) eine solche bei der Frequenz f=nf0 (im negativen Frequenzbereich) kennzeichnet.
  • Die Impulsgewichte sind im allgemeinen komplex.

Diese Aussagen werden auf der nächsten Seite anhand zweier Beispiele verdeutlicht.

Wir betrachten – wie im Beispiel zu Beginn dieses Abschnitts - zwei periodische Rechtecksignale, jeweils mit Periodendauer T0 und Grundfrequenz f0=1/T0. Das Signal

xg(t)=4π[cos(ω0t)13cos(3ω0t)+15cos(5ω0t)+]


Spektrum eines periodischen Rechtecksignals

ist eine gerade, aus verschiedenen Cosinusanteilen zusammengesetzte Funktion. Die zugehörige Spektralfunktion Xg(f) ist damit rein reell. Wie auf der Seite Spektraldarstellung eines Cosinussignals bereits beschrieben wurde, liefert die Grundwelle zwei Diracfunktionen bei ±f0, jeweils gewichtet mit 2/π. Dieses Gewicht entspricht den (im Allgemeinen komplexen) Fourierkoeffizienten D1=D1, die nur im Sonderfall einer geraden Funktion reell sind. Weitere Diracfunktionen gibt es bei ±3f0 (negativ), ±5f0 (positiv), ±7f0 (negativ) usw. Alle Phasenwerte ϕn sind aufgrund der alternierenden Vorzeichen entweder 0 oder π.

Die unten dargestellte Funktion xu(t) ist ungerade:

xu(t)=4π[sin(ω0t)+13sin(3ω0t)+15sin(5ω0t)+].

Wie auf der Seite Spektraldarstellung eines Sinussignals bereits beschrieben wurde, liefert hier die Grundwelle zwei Diracfunktionen bei +f0 (gewichtet mit j2/π) bzw. bei f0 (gewichtet mit +j2/π). Auch alle weiteren Diracfunktionen bei ±3f0, ±5f0, usw. sind rein imaginär und in gleicher Richtung gewichtet wie die Diracfunktionen bei ±f0. Die beiden Betragsspektren sind gleich: |Xu(f)|=|Xg(f)|.


Das Gibbsche Phänomen

Nicht jedes Signal eignet sich für die Fourierreihendarstellung. Hier einige Einschränkungen:

  • Eine wichtige Voraussetzung für die Konvergenz der Fourierreihe ist, dass das Signal nur endlich viele Unstetigkeitsstellen je Periode besitzen darf.
  • An denjenigen Stellen t=ti, an denen x(t) Sprünge aufweist, konvergiert die Reihe gegen den aus dem jeweiligen links– und rechtsseitigen Grenzwert gebildeten arithmetischen Mittelwert.
  • In der Umgebung solcher Sprungstellen kommt es in der Reihendarstellung meist zu hochfrequenten Oszillationen. Dieser Fehler ist von prinzipieller Art, das heißt, er ließe sich auch nicht vermeiden, wenn man unendlich viele Summanden berücksichtigen würde. Man spricht vom Gibbschen Phänomen, benannt nach dem Physiker Josiah Willard Gibbs.
  • Durch eine Erhöhung von N wird zwar der fehlerhafte Bereich kleiner, nicht jedoch die maximale Abweichung zwischen dem Signal x(t) und der Fourierreihendarstellung xN(t). Der maximale Fehler beträgt ca. 9% der Sprungamplitude – und zwar unabhängig von N.


Das Gibbsche Phänomen und weitere interessante Aspekte werden in einem Lernvideo behandelt: Eigenschaften und Genauigkeit der Fourierreihe (Dauer Teil 1: 3:31 – Teil 2: 8:39)

Links sehen Sie gepunktet einen Ausschnitt eines periodischen ±1–Rechtecksignals und die dazugehörige Fourierreihendarstellung mit N = 1, 3 und 5 Summanden. Die Grundwelle hat hier den Amplitudenwert /π1.27. Auch mit N = 5 (das bedeutet wegen A2 = A4 = 0 drei Summanden) unterscheidet sich die Fourierreihe vom anzunähernden Rechtecksignal noch deutlich, vor allem im Bereich der Flanke.

Zum Gibbschen Phänomen

Aus dem rechten Bild ist zu erkennen, dass die Flanke und der innere Bereich mit N = 100 relativ gut nachgebildet werden, es aber an der Sprungstelle aufgrund des Gibbschen Phänomens noch immer zu Überschwingern kommt. Da hier die Sprungamplituden jeweils gleich 2 sind, ergeben sich die Maximalwerte näherungsweise zu 1.18. Mit N = 1000 wären die Überschwinger genau so groß, aber auf einen noch engeren Raum begrenzt und bei zeitdiskreter Darstellung eventuell nicht mehr sichtbar.


Aufgaben zum Kapitel

2.4 Geichgerichteter Cosinus

2.5 Einweggleichrichtung

2.6 Komplexe Fourierreihe

A2.3 cos- und sin-Anteil

Z2.3 Schwingungsparameter