The GWSSUS Channel Model

From LNTwww

Verallgemeinerte Systemfunktionen zeitvarianter Systeme (1)


Während es bei linearen zeitinvarianten (LZI) Systemen mit der Übertragungsfunktion H(f) und der Impulsantwort h(τ) nur zwei das System vollständig beschreibende Funktionen gibt, sind bei zeitvarianten (LZV) Systemen insgesamt vier verschiedene Systemfunktionen möglich. Eine formale Untersscheidung dieser Funktionen hinsichtlich Zeit– und Frequenzbereichsdarstellung durch Klein– und Großbuchstaben ist damit ausgeschlossen.

Deshalb nehmen wir nun eine Nomenklaturänderung vor, die sich wie folgt formalisieren lässt:

  • Die vier möglichen Systemfunktionen werden einheitlich mit η12 bezeichnet.
  • Der erste Index ist entweder ein V (Verzögerungszeit τ) oder ein F (Frequenz f).
  • Als zweiter Index ist entweder ein Z (Zeit t) oder ein D (Dopplerfrequenz fD) möglich.

Da beim Mobilfunk im Gegensatz zur leitungsgebundenen Übertragung die Systemfunktionen nicht deterministisch beschrieben werden können, sondern statistische Größen sind, müssen später noch entsprechende Korrelationsfunktionen betrachtet werden. Diese bezeichnen wir im Folgenden einheitlich mit φ12, und verwenden gleiche Indizes wie für die Systemfunktionen η12.

Diese formalisierten Bezeichnungen sind in der folgenden Grafik in blauer Schrift eingetragen. Zusätzlich sind die in anderen Kapiteln oder der Literatur verwendeten Bezeichnungen angegeben (graue Schrift). In den weiteren Kapiteln werden diese teilweise ebenfalls benutzt.

Zusammenhang zwischen den Systemfunktionen

Die Bildbeschreibung folgt auf der nächsten Seite.

Verallgemeinerte Systemfunktionen zeitvarianter Systeme (2)


In der Grafik auf der letzten Seite sind die vier Systemfunktionen dargestellt. Oben erkennt man die zeitvariante Impulsantwort ηVZ(τ, t), die in Kapitel 2.2 mit h(τ, t) bezeichnet wurde. Die zugehörige Autokorrelationsfunktion (AKF) ist

\[\varphi_{\rm VZ}(\tau_1, t_1, \tau_2, t_2) = {\rm E} \left [ \eta_{\rm VZ}(\tau_1, t_1) \cdot \eta_{\rm VZ}^{\star}(\tau_2, t_2) \right ]\hspace{0.05cm}. \]

Zur Frequenz–Zeit–Darstellung (rechter Block) kommt man durch eine Fouriertransformation bezüglich der Verzögerung τ. Man erhält so die zeitvariante Übertragungsfunktion H(f, t) = ηFZ(f, t). Die Fouriertransformation hinsichtlich τ ist in der Grafik durch „Fτ[ · ]” angedeutet. Ausgeschrieben lautet das Fourierintegral:

\[\eta_{\rm FZ}(f, t) = \int_{-\infty}^{+\infty} \eta_{\rm VZ}(\tau, t) \cdot {\rm exp}(- {\rm j}\cdot 2 \pi f \tau)\hspace{0.15cm}{\rm d}\tau \hspace{0.05cm}, \hspace{0.3cm} {\rm kurz:} \hspace{0.2cm} \eta_{\rm FZ}(f, t) \hspace{0.2cm} \stackrel{f, \hspace{0.05cm} \tau}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} \eta_{\rm VZ}(\tau, t) \hspace{0.05cm}.\]

Die AKF dieser zeitvarianten Übertragungsfunktion lautet allgemein:

\[\varphi_{\rm FZ}(f_1, t_1, f_2, t_2) = {\rm E} \left [ \eta_{\rm FZ}(f_1, t_1) \cdot \eta_{\rm FZ}^{\star}(f_2, t_2) \right ]\hspace{0.05cm}.\]

Die Scatter–Funktion ηVD(τ, fD) entsprechend dem linken Block – manchmal auch mit s(τ, fD) bezeichnet – beschreibt den Mobilfunkkanal im Verzögerungs–Doppler–Bereich. Sie ergibt sich aus der zeitvarianten Impulsantwort ηVZ(τ, t) durch Fouriertransformation bezüglich des zweiten Parameters t:

\[ \eta_{\rm VD}(\tau, f_{\rm D}) \hspace{0.2cm} \stackrel{f_{\rm D}, \hspace{0.05cm}t}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} \eta_{\rm VZ}(\tau, t)\]

\[\Rightarrow \hspace{0.3cm} \varphi_{\rm VD}(\tau_1, f_{\rm D_1}, \tau_2, f_{\rm D_2}) = {\rm E} \left [ \eta_{\rm VD}(\tau_1, f_{\rm D_1}) \cdot \eta_{\rm VD}^{\star}(\tau_2, f_{\rm D_2}) \right ] \hspace{0.05cm}.\]

Der Funktionsparameter fD bezeichnet hierbei die Dopplerfrequenz.

Abschließend betrachten wir noch die so genannte frequenzvariante Übertragungsfunktion, also die Frequenz–Doppler–Darstellung. Entsprechend der Grafik gelangt man zu dieser auf zwei Wege:

\[\eta_{\rm FD}(f, f_{\rm D}) \hspace{0.2cm} \stackrel{f_{\rm D}, \hspace{0.05cm}t}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} \eta_{\rm FZ}(f, t)\hspace{0.05cm},\]

\[\eta_{\rm FD}(f, f_{\rm D}) \hspace{0.2cm} \stackrel{f, \hspace{0.05cm}\tau}{\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ} \hspace{0.2cm} \eta_{\rm VD}(\tau, f_{\rm D})\hspace{0.05cm}.\]

Anzumerken ist, dass die angegebenen Fourier–Zusammenhänge zwischen den Systemfunktionen in der Grafik durch die äußeren, dunkelgrünen Pfeile veranschaulicht sind. Die inneren (helleren) Pfeile kennzeichnen jeweils die Verknüpfungen über die inverse Fouriertransformation.

Hinweis: Ein Interaktionsmodul zeigt den Zusammenhang zwischen Zeit– und Frequenzbereich, formelmäßig beschreibbar durch Fouriertransformation und Fourierrücktransformation:

Zeitfunktion und zugehörige Spektralfunktion Please add link and do not upload flash video.

Vereinfachungen aufgrund der GWSSUS–Voraussetzungen


Der allgemeine Zusammenhang zwischen den vier Systemfunktionen ist aufgrund nichtstationärer Effekte sehr kompliziert. Es müssen gegenüber dem allgemeinen Modell einige Einschränkungen getroffen werden, um zu einem geeigneten Modell für den Mobilfunkkanal zu gelangen, aus dem sich relevante Aussagen für praktische Anwendungen ableiten lassen.

Man kommt zum GWSSUS–Modell (Gaussian Wide Sense Stationary Uncorrelated Scattering) durch folgende Festlegungen:

  • Der Zufallsprozess der Kanalimpulsantwort h(τ, t) = ηVZ(τ, t) wird allgemein als komplex (also Beschreibung im äquivalenten Tiefpassbereich), gaußisch (Kennung G) sowie als mittelwertfrei (Rayleigh, nicht Rice, also keine Sichtverbindung) angenommen.
  • Der Zufallsprozess sei schwach stationär, das heißt, seine Kenngrößen ändern sich mit der Zeit nur geringfügig, und die AKF φVZ(τ1, t1, τ2, t2) der zeitvarianten Impulsantwort hängt nicht mehr von den absoluten Zeiten t1 und t2 ab, sondern nur noch von der Zeitdifferenz <nobr>Δt = t2t1.</nobr> Darauf weist die Kennung WSS   ⇒   Wide Sense Stationary hin.
  • Die einzelnen Echos aufgrund von Mehrwegeausbreitung sind unkorreliert, was durch die Kennung US   ⇒   Uncorrelated Scattering ausgedrückt wird.