Exercise 4.15Z: MSK Basic Pulse and MSK Spectrum
Der zur Realisierung der MSK mittels Offset–QPSK stets erforderliche Grundimpuls hat die Form: $$g_{\rm MSK}(t) = \left\{ \begin{array}{l} g_0 \cdot \cos (\frac{\pi \cdot t}{2 \cdot T}) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{10}c} | t | \le T \hspace{0.05cm}, \\ {\rm sonst}\hspace{0.05cm}. \\ \end{array$$ Dieser ist in der Grafik oben dargestellt. Darunter gezeichnet ist die Spektralfunktion $G(f)$, also die Fouriertransformierte von $g(t)$. Die dazugehörige Gleichung soll in dieser Aufgabe ermittelt werden, wobei zu berücksichtigen ist: $$g(t) = c(t) \cdot r(t)\hspace{0.05cm}.$$ Hierbei bezeichnet
- $c(t)$ eine Cosinusschwingung mit Amplitude 1 und (noch zu bestimmender) Frequenz $f_0$,
- $r(t)$ eine Rechteckfunktion mit der Amplitude $g_0$ und der Dauer 2T.
Hinweis: Die Aufgabe gehört zum Themengebiet von Kapitel 4.4. Das hier gewonnene Ergebnis wird auch in der Aufgabe A4.14 verwendet.
Fragebogen
Musterlösung