Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 1.6: Root Nyquist System

From LNTwww


Cosine spectrum (transmitter & receiver)

The diagram on the right shows

  • the spectrum  Gs(f)  of the basic transmission pulse,
  • the frequency response  HE(f)  of the receiver filter


of a binary and bipolar transmission system, which are identical in shape to each other:

Gs(f)={Acos(πf2f2)0for|f|f2,else,
HE(f)={1cos(πf2f2)0for|f|f2,else.

In the whole exercise  A = 10^{–6} \ \rm V/Hz  and  f_{2} = 1 \ \rm MHz are valid.

  • Assuming that the bit rate  R = 1/T  is chosen correctly,  the basic transmitter pulse  g_{d}(t) = g_{s}(t) ∗ h_{\rm E}(t)  satisfies the first Nyquist criterion.
  • For the associated spectral function  G_{d}(f),  the rolloff thereby occurs cosinusoidally similar to a cosine rolloff spectrum.
  • The rolloff factor  r  is to be determined in this exercise.



Notes:

  • The crest factor is the quotient of the maximum and the rms value of the transmitted signal and thus a measure of the intersymbol interfering at the transmitting end:
C_{\rm S} = \frac{s_0}{\sqrt{E_{\rm B}/T}} = \frac{{\rm Max}[s(t)]}{\sqrt{{\rm E}[s^2(t)]}}= {s_0}/{s_{\rm eff}}.


Questions

1

Calculate the Nyquist spectrum  G_{d}(f).  What is the Nyquist frequency and the rolloff factor?

f_{\rm Nyq} \ = \

\ \rm MHz
r \ = \

2

What is the bit rate of the Nyquist system at hand?

R \ = \

\ \rm Mbit/s

3

Why is it an optimal system under the constraint  "power limitation"?

The overall system satisfies the Nyquist condition.
The crest factor is  C_{\rm S} = 1.
The receiver filter  H_{\rm E}(f)  is matched to the basic transmission pulse  G_{s}(f)

4

What is the bit error probability if the power density of the AWGN noise is  N_{0} = 8 \cdot 10^{–8}\ \rm V^{2}/Hz  (referenced to  1 Ω)

p_{\rm B} \ = \

\ \cdot 10^{-6}


Solution

(1)  With the functions  G_{s}(f)  and  H_{\rm E}(f),  the spectrum of the basic detection pulse for  |f| \leq f_{2}:

G_d(f) = G_s(f) \cdot H_{\rm E}(f) = A \cdot \cos^2 \left( \frac {\pi \cdot f}{2 \cdot f_2} \right).
  • According to the general definition of the cosine rolloff spectrum,  the corner frequencies are  f_{1} = 0  and  f_{2} = 1\ \rm MHz.
  • From this follows for the Nyquist frequency  (symmetry point with respect to the rolloff):
f_{\rm Nyq} = \frac{f_1 +f_2 } {2 } \hspace{0.1cm}\underline { = 0.5\,{\rm MHz}}\hspace{0.05cm}.
  • The rolloff factor is
r = \frac{f_2 -f_1 } {f_2 +f_1 } \hspace{0.1cm}\underline {= 1} \hspace{0.05cm}.
  • This means:   G_{d}(f) describes a \cos^{2} spectrum.


(2)  The relationship between Nyquist frequency and symbol duration  T  is  f_{\rm Nyq} = 1/(2T).

  • From this it follows for the bit rate  R = 1/T = 2 \cdot f_{\rm Nyq}\ \underline{= 1 \ \rm Mbit/s}.
  • Note the different units for frequency and bit rate.


(3)  The  first and third solutions  are correct:

  • This is an optimal binary system under the constraint of power limitation.
  • The crest factor is not important under power limitation.  With the conditions given here,  C_{\rm S} > 1 would apply.


(4)  The bit error probability of an optimal system can be calculated as follows:

p_{\rm B} = {\rm Q} \left( \sqrt{{2 \cdot E_{\rm B}}/{N_0}}\right)\hspace{0.05cm}.
  • In the given example,  we obtain for the average energy per bit:
E_{\rm B} = \ \int_{-\infty}^{+\infty}|G_s(f)|^2 \,{\rm d} f = A^2 \cdot \int_{-1/T}^{+1/T} H_{\rm Nyq}(f) \,{\rm d} f = \ \frac {A^2}{T} = \frac {(10^{-6}\,{\rm V/Hz})^2}{10^{-6}\,{\rm s}} = 10^{-6}\,{\rm V^2s}\hspace{0.05cm}.
  • With  N_{0} = 8 \cdot 10^{–8} \ \rm V^{2}/Hz,  this further gives:
p_{\rm B} = {\rm Q} \left( \sqrt{\frac{2 \cdot 10^{-6}\,{\rm V^2s}}{8 \cdot 10^{-8}\,{\rm V^2/Hz}}}\right)= {\rm Q} \left( \sqrt{25}\right)= {\rm Q} (5) \hspace{0.1cm}\underline {= 0.287 \cdot 10^{-6}}\hspace{0.05cm}.