Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 4.2Z: Mixed Random Variables

From LNTwww

PDF of  X  (top),  and
CDF of  Y  (bottom)

One speaks of a  "mixed random variable",  if the random variable contains discrete components in addition to a continuous component.

  • For example, the random variable  Y  with  cumulative distribution function  FY(y)  as shown in the sketch below has both a continuous and a discrete component.
  • The  probability density function  fY(y)  is obtained from  FY(y)  by differentiation.
  • The jump at  y=1  in the CDF thus becomes a "Dirac" in the probability density function.
  • In subtask  (4)  the differential entropy  h(Y)  of  Y  is to be determined (in bit), assuming the following equation:
h(Y)=supp(fY)fY(y)log2[fY(y)]dy.
  • In subtask  (2),  calculate the differential entropy  h(X)  of the random variable  X  whose PDF  fX(x)  is sketched above.  If one performs a suitable boundary transition, the random variable  X  also becomes a mixed random variable.



Hints:



Questions

1

What is the PDF height  A  of  fX(x)  around  x=1?

A=0.5/ε,
A=0.5/ε+0.25,
A=1/ε.

2

Calculate the differential entropy for different  ε–values.

ε = 10^{-1}\text{:} \ \ h(X) \ = \

\ \rm bit
ε = 10^{-2}\text{:} \ \ h(X) \ = \

\ \rm bit
ε = 10^{-3}\text{:} \ \ h(X) \ = \

\ \rm bit

3

What is the result of the limit  ε \to 0?

f_X(x)  now has a continuous and a discrete component.
The differential energy  h(X)  is negative.
The magnitude  |h(X)|  is infinite.

4

Which statements are true for the random variable  Y?

The CDF value at the point  y = 1  is  0.5.
Y  contains a discrete and a continuous component.
The discrete component at   Y = 1  occurs with  10\%  probability.
The continuous component of  Y  is uniformly distributed.
The differential entropies of  X  and  Y  are equal.


Solution

(1)  Proposed solution 2  is correct because the integral  1  over the PDF must yield:

f_X(x) \hspace{0.1cm}{\rm d}x = 0.25 \cdot 2 + (A - 0.25) \cdot \varepsilon \stackrel{!}{=} 1 \hspace{0.3cm} \Rightarrow\hspace{0.3cm}(A - 0.25) \cdot \varepsilon \stackrel{!}{=} 0.5 \hspace{0.3cm}\Rightarrow\hspace{0.3cm} A = 0.5/\varepsilon +0.25\hspace{0.05cm}.


(2)  The differential entropy (in "bit") is given as follows:

h(X) = \hspace{0.1cm} \hspace{-0.45cm} \int\limits_{{\rm supp}(f_X)} \hspace{-0.35cm} f_X(x) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{f_X(x)} \hspace{0.1cm}{\rm d}x \hspace{0.05cm}.

We now divide the integral into three partial integrals:

h(X) = \hspace{-0.25cm} \int\limits_{0}^{1-\varepsilon/2} \hspace{-0.15cm} 0.25 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.25} \hspace{0.1cm}{\rm d}x + \hspace{-0.25cm}\int\limits_{1+\varepsilon/2}^{2} \hspace{-0.15cm} 0.25 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.25} \hspace{0.1cm}{\rm d}x + \hspace{-0.25cm}\int\limits_{1-\varepsilon/2}^{1+\varepsilon/2} \hspace{-0.15cm} \big [0.5/\varepsilon + 0.25 \big ] \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.5/\varepsilon + 0.25} \hspace{0.1cm}{\rm d}x
\Rightarrow \hspace{0.3cm} h(X) = 2 \cdot 0.25 \cdot 2 \cdot (2-\varepsilon) - (0.5 + 0.25 \cdot \varepsilon) \cdot {\rm log}_2 \hspace{0.1cm}(0.5/\varepsilon +0.25) \hspace{0.05cm}.

In particular, one obtains

  • for  \varepsilon = 0.1:
h(X) =1.9 - 0.525 \cdot {\rm log}_2 \hspace{0.1cm}(5.25) = 1.9 - 1.256 \hspace{0.15cm}\underline{= 0.644\,{\rm bit}} \hspace{0.05cm},
  • for  \varepsilon = 0.01:
h(X) =1.99 - 0.5025 \cdot {\rm log}_2 \hspace{0.1cm}(50.25)= 1.99 - 2.84 \hspace{0.15cm}\underline{= -0.850\,{\rm bit}} \hspace{0.05cm}
  • for  \varepsilon = 0.001:
h(X) =1.999 - 0.50025 \cdot {\rm log}_2 \hspace{0.1cm}(500.25) = 1.999 - 8.967 \hspace{0.15cm}\underline{= -6.968\,{\rm bit}} \hspace{0.05cm}.


(3)  All the proposed solutions  1  are correct:

  • After the boundary transition   \varepsilon → 0   we obtain for the differential entropy
h(X) = \lim\limits_{\varepsilon \hspace{0.05cm}\rightarrow \hspace{0.05cm} 0} \hspace{0.1cm}\big[(2-\varepsilon) - (0.5 + 0.25 \cdot \varepsilon) \cdot {\rm log}_2 \hspace{0.1cm}(0.5/\varepsilon +0.25)\big] = 2\,{\rm bit} - 0.5 \cdot \lim\limits_{\varepsilon \hspace{0.05cm}\rightarrow \hspace{0.05cm} 0}\hspace{0.1cm}{\rm log}_2 \hspace{0.1cm}(0.5/\varepsilon) \hspace{0.3cm}\Rightarrow\hspace{0.3cm} - \infty \hspace{0.05cm}.
PDF and CDF of the mixed random variable  X
  • The probability density function (PDF) in this case is given by.
f_X(x) = \left\{ \begin{array}{c} 0.25 + 0.5 \cdot \delta (x-1) \\ 0 \\ \end{array} \right. \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \hspace{0.1cm} 0 \le x \le 2, \\ {\rm sonst} \\ \end{array} \hspace{0.05cm}.

Consequently, it is a  "mixed"  random variable with

  • a stochastic, uniformly distributed part in the range  0 \le x \le 2, and
  • a discrete component at  x = 1  with probability  0.5.


The graph shows the PDF  f_X(x)  on the left and the CDF  F_X(x) on the right.
(4)  The correct solutions are 2, 3 and 5.  The lower graph shows the PDF and the CDF of the random variable  Y.  You can see:

PDF and CDF of the mixed random variable Y
  • Like X ,  Y  contains a continuous and a discrete part.
  • The discrete part occurs with probability  {\rm Pr}(Y = 1) = 0.1.
  • Since  F_Y(y)= {\rm Pr}(Y \le y)  holds, the right-hand side limit is:
F_Y(y = 1) = 0.55.
  • The continuous component is not uniformly distributed;  rather, there is a triangular PDF.
  • The last proposition is also correct:   h(Y) = h(X) = - \infty.


Because:   For every random quantity with a discrete part – and it is also extremely small, the differential entropy is equal minus infinity..