Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 4.5: Non-Linear Quantization

From LNTwww

PCM system with companding

To investigate  "non-linear quantization"  we start from the outlined system model.

  • We disregard the influence of the channel and the PCM coding or decoding.
  • Thus,  v_{\rm Q}(ν \cdot T_{\rm A}) = q_{\rm Q}(ν \cdot T_{\rm A})  always applies,  whereby the time specification  ν \cdot T_{\rm A}  is omitted in the following.


By comparing one output variable with one input variable at the same time,  it is possible to determine the influence

  • of the compressor   ⇒    q_{\rm K}(q_{\rm A}),
  • of the linear quantizer   ⇒    q_{\rm Q}(q_{\rm K}),
  • of the non-linear quantizer   ⇒    q_{\rm Q}(q_{\rm A}),
  • of the expander   ⇒    v_{\rm E}(v_{\rm Q}),  and
  • of the overall system   ⇒    v_{\rm E}(q_{\rm A}).


The following assumptions are made:

  • All samples  q_{\rm A}  are in the value range  ±1  .
  • The  (linear)  quantizer works with  M = 256  quantization levels,  which are marked with  μ = 0  to  μ = 255 .
  • For compression,  the so-called  "13-segment"  characteristic is used.


This means:

  • In the range  |q_{\rm A}| ≤ 1/64  holds  q_{\rm K} = q_{\rm A}.
  • For  q_{\rm A} > 1/64,  there are the following six additional ranges  (k = 1, ... , 6)  of the compressor characteristic: 
      ⇒   range k\hspace{0.3cm}{\rm (if}\hspace{0.3cm} 2^{k-7}< q_{\rm A} \le 2^{k-6}) \hspace{0.05cm}   ⇒   q_{\rm K}(q_{\rm A}) = 2^{4-k} \cdot q_{\rm A} + {k}/{8}.
  • Another six domains exist for negative  q_{\rm A}  values with  k = -1, ... , -6,  which are point-symmetric with respect to the origin. 
    However,  these are not considered further in this exercise.



Hints:


Questions

1

If  q_{\rm A} = 0.4:   What is the output value  q_{\rm K}  of the compressor?

q_{\rm K} \ = \

2

To which quantization interval  μ  does  q_{\rm A} = 0.4  belong?

\mu \ = \

3

Which quantization value  q_{\rm Q}  belongs to  q_{\rm A} = 0.4?

q_{\rm Q} \ = \

4

In contrast,  what quantization value  q_{\rm Q}  belongs to  q_{\rm A} = 0.04?

q_{\rm Q} \ = \

5

At the receiver,  the input value is  v_{\rm Q} = 211/256 ≈ 0.824.  What value  v_{\rm E}  does the expander provide?

v_{\rm E} \ = \

6

What are the properties of the  "non-linear quantizer characteristic"  q_{\rm Q}(q_{\rm A}) ?

The characteristic  q_{\rm Q}(q_{\rm A})  approximates the compressor characteristic in steps.
The characteristic  q_{\rm Q}(q_{\rm A})  approximates the angle bisector in steps.
The step width is the same in all segments  (except for  k = 0) .
The step height is equal in all segments  (except for  k = 0) .

7

What are the properties of the  "overall system characteristic"  v_{\rm E}(q_{\rm A}) ?

The characteristic  v_{\rm E}(q_{\rm A})  approximates the compressor characteristic in steps.
The characteristic  v_{\rm E}(q_{\rm A})  approximates the angle bisector in steps.
The step width is the same in all segments  (except for  k = 0) .
The step height is equal in all segments  (except for  k = 0) .


Solution

(1)  The sample  q_{\rm A} = 0.4  belongs to the segment  k = 5  covering the range  1/4 < q_{\rm A} ≤ 1/2.  From the given equation it follows that with  k = 5:

q_{\rm K}(q_{\rm A}) = 2^{4-k} \cdot q_{\rm A} + {k}/{8}={1}/{2}\cdot 0.4 + {5}/{8} \hspace{0.15cm}\underline {= 0.825}\hspace{0.05cm}.


(2)  The input value of the linear quantizer is now  q_{\rm K} = 0.825,  so the following calculation applies:

{105}/{128} < q_{\rm K} = 0.825 \le {106}/{128}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} m = 105 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \mu = 128 + 105\hspace{0.15cm}\underline { = 233} \hspace{0.05cm}.


(3)  According to the specification page, the quantization interval  μ = 128 + m  is given by the value  q_{\rm Q} = 1/256 + m/128.  With  m = 105  it follows:

q_{\rm Q} = \frac{1}{256} + \frac{105}{128} \hspace{0.15cm}\underline {\approx 0.824} \hspace{0.05cm}.


(4)  According to the sample solution to subtask  (3)  with the input value  q_{\rm A} = 0.04:

\frac{1}{32} < q_{\rm A} \le \frac{1}{16}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} k = 2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} q_{\rm K} = 2^2 \cdot 0.04 + \frac{2}{8}= 0.41
\Rightarrow \hspace{0.3cm}\frac{52}{128} < q_{\rm K} = 0.41 \le \frac{53}{128}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} m = 52 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \mu = 128 + 52 = 180\hspace{0.3cm} \Rightarrow \hspace{0.3cm}q_{\rm Q} = \frac{1}{256} + \frac{52}{128} \hspace{0.15cm}\underline {= 0.41} \hspace{0.05cm}.


Characteristics of compressor (blue) & expander (green)

(5)  We are looking for the solution in several steps:

  • In the compressor:   q_{\rm A} = 0.4  led to the initial value  q_{\rm K} = 0.825  and after quantization to the value  q_{\rm Q} = 0. 824   ⇒   see subtasks  (1)  and  (3).  ⇒   red marks in the graph.
  • On the receiver side,  this results in  v_{\rm Q} = 0.824  approximately back to  v_{\rm E} ≈ 0.4   ⇒   brown marks in the graph.
  • However,  due to quantization,  this is only an approximation.  Exactly:
v_{\rm E} = 0.25 + \frac{0.824-0.750}{0.875-0.750} \cdot 0.25 \hspace{0.15cm}\underline {= 0.398} \hspace{0.05cm}.

This calculation process can be understood from the graph. 

Although the expander characteristic  v_E(υ_{\rm Q})  is equal to the inverse function of the compressor characteristic  q_K(q_{\rm A})  an error results because the input  v_{\rm Q}  of the expander is discrete in value  (influence of quantization).


(6)  Correct are the  statements 1 and 4,  as can be verified by the following left graph:

13-segment characteristic curves: left:  q_{\rm Q}(q_{\rm A}),           right:  v_{\rm E}(q_{\rm A})
  • The width of each step is different in each segment.  In the outermost segment  (k = 6)  the step width is  0.5/16 = 1/32,  in the next segment  (k = 5)  only more  0.25/16 = 1/64.
  • The step widths in the further segments are  1/128 \ (k = 4)1/256 \ (k = 3)1/512\ (k = 2)  and  1/1024 \ (k = 1).
  • The innermost range from  -1/64  to  +1/64  is divided into  64  steps,  resulting in the step width  1/2048.
  • The step height,  on the other hand,  is constantly equal  1/8  divided by  16 = 1/128  in the segments  k ≠ 0  and equal  1/256 in the middle segment.


(7)  Correct here is  only the second statement:

  • By the expander,  the quantization is now along the bisector of the angle.
  • In each segment,  step width and step height are constant.
  • As the right graphic shows,  however,  in the next inner segment the width and the height are only half as large.