Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 1.16Z: Bounds for the Gaussian Error Function

From LNTwww

Function  Q(x)  and approximations;
it holds:  Qu(x)Q(x)Qo(x)

The probability that a zero-mean Gaussian random variable  n  with standard deviation  σ   ⇒   variance  σ2  is greater in magnitude than a given value  A  is equal to

Pr(n>A)=Pr(n<A)=Q(A/σ).

Here is used one of the most important functions for Communications Engineering  (drawn in red in the diagram):  
the  "complementary Gaussian error function"

Q(x)=12π+xeu2/2du.

Q(x)  is a monotonically decreasing function with  Q(0)=0.5.  For very large values of  x   ⇒   Q(x) tends 0.


The integral of the Q–function is not analytically solvable and is usually given in tabular form.  From the literature,  however,  manageable approximations or bounds for positive  x  values are known:

  • the  "upper bound"   ⇒   upper   (German:  "obere"   ⇒   subscript: "o")  blue curve in adjacent graph,  valid for  x>0:
Qo(x)=12πxex2/2Q(x),
  • the  "lower bound"   ⇒   upper   (German:  "untere"   ⇒   subscript: "u")  blue curve in adjacent graph,  valid for  x>1:
Qu(x)=11/x22πxex2/2Q(x),
  • the  "Chernoff-Rubin bound"  (green curve in the graph, drawn for  K=1):
QCR(x)=Kex2/2Q(x).

In the exercise it is to be investigated to what extent these bounds can be used as approximations for  Q(x)  and what corruptions result.



Hints:

  • The exercise provides some important hints for solving  "Exercise 1.16",  in which  QCR(x)  is used to derive the   "Bhattacharyya Bound"  for the AWGN channel.




Questions

1

What values do the upper and lower bounds for  x=4  provide?

Qo(x=4) = 

 105
Qu(x=4) = 

 105

2

What statements hold for the functions  Qo(x)  and  Qu(x)?

For  x2:  Both bounds are usable.
For  x<1Qu(x)  is unusable   (because  Qu(x)<0).
For  x<1Qo(x)  is unusable  (because  Qo(x)>1).

3

By what factor is the Chernoff-Rubin Bound above  Qo(x)?

QCR(x=2)/Qo(x=2) = 

QCR(x=4)/Qo(x=4) = 

QCR(x=6)/Qo(x=6) = 

4

Determine  K  such that  KQCR(x)  is as close as possible to  Q(x)  and at the same time  Q(x)K·QCR(x)  is observed for all  x>0 .

K = 


Solution

(1)  The upper bound is:

Qo(x)=12πxex2/2Qo(4)=12π4e83.346105_.
  • The lower bound can be converted as follows:
Qu(x)=(11/x2)Qo(x)Qu(4)3.137105_.
  • The relative deviations from the  actual  value  {\rm Q}(4) = 3.167 · 10^{–5}  are  +5\%  resp.  –1\%.


(2)  Correct are the  solutions 1 and 2:

  • For  x = 2,  the actual function value  {\rm Q}(x) = 2.275 \cdot 10^{-2}  is bounded by  {\rm Q_{o}}(x) = 2.7 \cdot 10^{-2}  and  {\rm Q_u}(x) = 2.025 \cdot 10^{-2}, respectively.
  • The relative deviations are therefore  18.7\% resp.  -11\%,.
  • The last statement is wrong:   Only for  x < 0.37   ⇒   {\rm Q_o}(x) > 1  is valid.



(3)  For the quotient of  {\rm Q}_{\rm CR}(x)  and  {\rm Q_o}(x),  according to the given equations:

q(x) = \frac{{\rm Q_{CR}}(x)}{{\rm Q_{o}}(x)} = \frac{{\rm exp}(-x^2/2)}{{\rm exp}(-x^2/2)/({\sqrt{2\pi} \cdot x})} = {\sqrt{2\pi} \cdot x}
\Rightarrow \hspace{0.3cm} q(x) \approx 2.5 \cdot x \hspace{0.3cm} \Rightarrow \hspace{0.3cm} q(x =2) \hspace{0.15cm}\underline{=5}\hspace{0.05cm}, \hspace{0.2cm}q(x =4)\hspace{0.15cm}\underline{=10}\hspace{0.05cm}, \hspace{0.2cm}q(x =6) \hspace{0.15cm}\underline{=15}\hspace{0.05cm}.
  • The larger the abscissa value  x  is,  the more inaccurately  {\rm Q}(x)  is approximated by  {\rm Q}_{\rm CR}(x).
  • When looking at the graph in the information section,  I first had the impression that  {\rm Q}_{\rm CR}(x)  results from  {\rm Q}(x)  by shifting to the right or shifting up. 
  • But this is only an optical illusion and does not correspond to the facts.



(4)  With  \underline{K = 0.5}  the new bound  0.5 \cdot {\rm Q}_{\rm CR}(x)  for  x = 0  agrees exactly with {\rm Q}(x=0) = 0.500.

  • For larger abscissa values,  the falsification  q \approx 1.25 \cdot x  thus also becomes only half as large.