Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 2.1: Rectification

From LNTwww
(Redirected from Exercise 2.1: Rectifying)

Periodic triangular signal

The graph shows the periodic signal  x(t).  If  x(t) is applied to the input of a non-linearity with the characteristic curve

y=g(x)={xforx0,0else,

the signal  y(t) is obtained at the output.  A second non-linear characteristic

z=h(x)=|x|

delivers the signal  z(t).




Note:



Questions

1

Which of the following statements are true?

y=g(x)  describes a half-wave rectifier.
y=g(x)  describes a full-wave rectifier.
z=h(x)  describes a half-wave rectifier.
z=h(x)  describes a full-wave rectifier.

2

What is the base frequency f0  of the signal  x(t)?

f0 = 

  Hz

3

What is the period duration  T0  of the signal  y(t)?

T0 = 

  ms

4

What is the basic circular frequency  ω0  of the signal  z(t)?

ω0 = 

  1/s


Solution

(1)  Correct are the solutions 1 and 4:

  • The non-linear characteristic  y=g(x)  describes a half-wave rectifier.
  • z=h(x)=|x|  describes a full-wave rectifier.


(2)  The period duration  x(t)  is  T0=2ms. The inverse magnitudes to the base frequency  f0=500Hz_.


(3)  The half-wave rectification does not change the duration of the period, see the left graph:  T0=2ms_.

Periodic triangular signals

(4)  After full-wave rectification, the signal  z(t)  has double the frequency (see right graph). The following values apply here:

T0=1ms,f0=1kHz,ω0=62831/s_.