Exercise 2.1Z: DSB-AM without/with Carrier

From LNTwww

The signals involved in this AM

The red curve on the graph shows a section of the transmitted signal  s(t)=q(t)·z(t)  of a double-sideband amplitude modulation  (abbreviated as DSB-AM)  without carrier.  The duration of the time interval is  200 µs.

Additionally plotted in the graph are:

  • the source signal  (as a blue dashed curve):
q(t)=1Vcos(2πfNt+ϕN),
  • the carrier signal  (as a grey dashed trace):
z(t)=1cos(2πfTt+ϕT).

From subtask  (4)  onwards,  the "DSB-AM with carrier"  is considered.  In that case, with  AT=2 V:

s(t)=(q(t)+AT)z(t).



Hints:



Questions

1

From the graph,  determine the phase values of the message and carrier signals.

ϕN = 

 degrees
ϕT = 

 degrees

2

What is the frequency fN  of the message signal  q(t)  and what is the frequency fT  of the carrier signal  z(t)?

fN = 

 kHz
fT = 

 kHz

3

Analyze the zero crossings of  s(t).  Which statements are true?

All zero crossings of  z(t)  are preserved in  s(t).
There are additional zero crossings caused by  q(t).
 s(t)=a(t)·cos(ωT·t)  holds with  a(t)=|q(t)|.

4

Determine the spectral function  S(f)  by convolution.  Which  (positive)  frequencies  f1  and  f2>f1  are included in the signal??

f1 = 

 kHz
f2 = 

 kHz

5

Let  AT=2 V.  What is the modulation depth  m?

m = 

6

Which of the statements are true for   "DSB–AM with carrier"  and  AT=2 V ?

S(f)  now includes Dirac delta functions at  ±fT.
The weights of these Dirac delta lines are each  2 V.
q(t)  can be seen in the envelope of  s(t).
Due to the additional carrier component,  the power remains unchanged.


Solution

(1)  Both signals are cosine   ⇒   ϕN=0_  and  ϕT=0_.


(2)  From the graph,  the period durations of   200 μs  and   20 μs   can be seen for  q(t)  and z(t),  respectively.

  • This gives the frequencies as   fN=5_  kHz and  fT=50_ kHz.


(3)  Answers 1 and 2  are correct:

  • The zero crossings of  z(t)  at  ±5 μs,  ±15 μs,  ±25 μs, ... ... are also present in the signal  s(t)    ⇒   Answer 1 is correct.
  • Other zero intersects of  s(t) – cause by  q(t)  – are present at  ±50 μs,  ±150 μs,  ±250 μs, ....   ⇒   Answer 2 is also correct.
  • In contrast, the third statement is not true. Instead,   s(t)=a(t)cos[ωTt+ϕ(t)].
DSB–AM spectra  Z(f)Q(f)  and  S(f)
  • For  q(t)>0  the phase function is  ϕ(t)=0  and  s(t)  coincides with   z(t).
  • In contrast, for  q(t)<0:   ϕ(t)=π=180.
  • At the zero crossings of  q(t),  the modulated signal   s(t)  exhibits phase jumps.


(4)  The spectrum  S(f)  results from the convolution of the spectral functions   Z(f)  and  Q(f),  each consisting of only two Dirac delta functions.  The graph displays the result.

  • The Dirac delta functions plotted in red apply only to the  "DSB-AM with carrier"  and refer to subtask (6).
  • Convolution of the two  Z(f)  Dirac delta functions at  fT=50 kHz  with  Q(f)  leads to the Dirac delta lines at  fTfN  and  fT+fN,  each with weight   0.5·0.5 V=0.25 V.
  • Thus,  the desired values are   f1=45 kHz_  and  f1=55 kHz_.
  • The Dirac function  0.5·δ(f+fT)  with two markers leads to two more Dirac delta lines at   f1  and  f2.


(5)  The modulation depth is calculated as:

m=qmaxAT=ANAT=0.5_.


(6)  Answers 1 and 3  are correct:

  • According to the sketch,  Dirac delta lines result at   ±fT,  both with impulse weight  AT/2=1 V.
  • At  m1q(t)  is detectable in the envelope   ⇒   envelope demodulation is applicable.
  • However,  this simpler receiver variant must be accounted for with a much larger transmission power.  
  • In this example  (m=0.5)  the addition of a carrier multiplies the transmission power by nine.