Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 3.2Z: Sinc-Squared Spectrum with Diracs

From LNTwww

sinc2– spectrum with Diracs

The sketched spectrum  X(f)  of a time signal  x(t)  is composed of

  • a continuous component  X1(f),
  • plus three discrete spectral lines   ⇒   "Dirac functions".


The continuous component with  f0=200kHz  and  X_0 = 10^{–5} \text{ V/Hz} is as follows:

X_1( f ) = X_0 \cdot {\mathop{\rm sinc}\nolimits} ^2 ( {{f}/{f_0}} ),\quad {\rm where is}\quad {\mathop{\rm sinc}\nolimits} (x) = {\sin (\pi x)}/(\pi x).
  • The spectral line at  f = 0  has the weight  –\hspace{-0.08cm}1\,\text{V}.
  • In addition, there are two lines at frequencies  \pm f_0,  both with weight  0.5\,\text{V}.




Hints:

  • It can be assumed as known:  A triangular pulse  y(t)  with amplitude  {A},  the absolute duration  2T  and symmetrical about  t = 0  (i.e.:  the signal values are  \ne 0   only between  –T  and  +T )  has the following spectral function:
Y( f ) = A \cdot T \cdot {\rm sinc}^2 ( f T ).


Question

1

What are the values of the parameters  {A}  (maximum) and  {T}  (one-sided duration) of the triangular signal component  x_1(t)?

A\ = \

 \text{V}
T\ = \

 \text{$µ$s}

2

What is the DC component  {B}  of the signal?

B\ = \

 \text{V}

3

What is the amplitude  C  of the periodic component of  x(t)?

C\ = \

 \text{V}

4

What are the maximum and minimum values of the signal  x(t)?

x_\text{max}\ = \

 \text{V}
x_\text{min}\hspace{0.2cm} = \

 \text{V}


Solution

Area of the triangular pulse

(1)  The one-sided duration of the symmetrical triangular pulse is  T = 1/f_0\hspace{0.15 cm}\underline{ = 5 \,{\rm µ s}}.

  • The spectral value  X_0 = X_1(f = 0)  indicates the pulse area of  x_1(t).
  • This is equal to  {A} \cdot {T}.  From this follows:
A = \frac{X_0 }{T} = \frac{ 10^{-5}\rm V/Hz }{5 \cdot 10^{-6}{\rm s}}\hspace{0.15 cm}\underline{= 2\;{\rm V}}.


(2)  The DC component is given by the Dirac weight at  f = 0.  One obtains  {B} \hspace{0.15 cm}\underline{= -1 \,\text{V}}.


(3)  The two spectral lines at  \pm f_0  together give a cosine signal with amplitude  {C} \hspace{0.15 cm}\underline{= 1 \text{V}}.


(4)  The maximum value occurs at time  {t} = 0    (here the triangular pulse and cosine signal are maximum):

x_{\text{max}} = A + B + C \hspace{0.15 cm}\underline{= +2 \text{V}}.
  • The minimum values of  {x(t)}  result when the triangular pulse has decayed and the cosine function delivers the value  –\hspace{-0.08 cm}1 \,\text{V} :
x_\text{min} = {B} - {C}\hspace{0.15 cm}\underline{ = -2\, \text{V}}.