Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 3.3: Code Sequence Calculation via U(D) and G(D)

From LNTwww

Considered generator matrix

The upper left section of the generator matrix  G  is shown for the considered convolutional code.

  • From this the partial matrices  Gl  are to be extracted under the boundary condition  m2,  with which then the transfer function matrix can be composed according to the following equation:
{\boldsymbol{\rm G}}(D) = \sum_{l = 0}^{m} {\boldsymbol{\rm G}}_l \cdot D\hspace{0.03cm}^l = {\boldsymbol{\rm G}}_0 + {\boldsymbol{\rm G}}_1 \cdot D + \ \text{...} \ \hspace{0.05cm}+ {\boldsymbol{\rm G}}_m \cdot D\hspace{0.03cm}^m \hspace{0.02cm}.
  • Searched are the  n  code sequences  \underline{x}^{(1)}, \ \underline{x}^{(2)}, \hspace{0.05cm} \text{...} \hspace{0.05cm} , \ \underline{x}^{(n)},  assuming the following information sequence:
\underline{u} = (0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} \text{...} \hspace{0.05cm}\hspace{0.05cm})
  • This sequence is thereby divided into  k  subsequences  \underline{u}^{(1)}, \ \underline{u}^{(2)}, \hspace{0.05cm} \text{...} \hspace{0.05cm} , \ \underline{u}^{(k)}  to split.
  • From their D–transforms
{U}^{(1)}(D) \hspace{0.15cm}\bullet\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\circ\hspace{0.15cm} \underline{u}^{(1)},\hspace{0.25cm} ...\hspace{0.25cm},\hspace{0.05cm} {U}^{(k)}(D) \hspace{0.15cm}\bullet\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\circ\hspace{0.15cm} \underline{u}^{(k)}
the vector   \underline{U}(D) = (U^{(1)}(D), \hspace{0.05cm} \text{...} \hspace{0.05cm} , \ U^{(k)}(D))   is formed.
  • Then applies to the code sequence vector in  D–representation:
\underline{X}(D) = \left (\hspace{0.05cm} {X}^{(1)}(D)\hspace{0.05cm}, \hspace{0.05cm} \text{...} \hspace{0.05cm}, \hspace{0.05cm} {X}^{(k)}(D)\hspace{0.05cm}\right ) = \underline{U}(D) \cdot {\boldsymbol{\rm G}}(D)\hspace{0.05cm}.



Hints:

  • Since also  \underline{u}  remains the same code sequence  \underline{x}  must result here as in Exercise 3.2.  However,  the solution paths of both exercises are fundamentally different.



Questions

1

What are the code parameters?   Hint:   For the memory applies:  m ≤ 2.

n \hspace{0.25cm} = \

k \hspace{0.28cm} = \

m \hspace{0.13cm} = \

2

Which statements are true for the transfer function matrix  \mathbf{G}(D)?

The  \mathbf{G}(D)  element in row 1,  column  1 is  "1".
The  \mathbf{G}(D)  element in row 2,  column 2 is  "1 + D".
The  \mathbf{G}(D)  element in row 3,  column 3 is  "1 + D^2".

3

Which statements are true for the  D–transforms of the input sequences?

U^{(1)}(D) = 1,
U^{(2)}(D) = 1 + D,
U^{(3)}(D) = D^2.

4

What are the first three bits of the code sequence  \underline{x}^{(1)}?

\underline{x}^{(1)} = (0, \, 1, \, 1, \, \hspace{0.05cm} \text{...} \hspace{0.05cm}),
\underline{x}^{(1)} = (1, \, 0, \, 0, \, \hspace{0.05cm} \text{...} \hspace{0.05cm}),
\underline{x}^{(1)} = (0, \, 0, \, 1, \, \hspace{0.05cm} \text{...} \hspace{0.05cm}).

5

What are the first three bits of the code sequence  \underline{x}^{(2)}?

\underline{x}^{(2)} = (0, \, 1, \, 1, \, \hspace{0.05cm} \text{...} \hspace{0.05cm}),
\underline{x}^{(2)} = (1, \, 0, \, 0, \, \hspace{0.05cm} \text{...} \hspace{0.05cm}),
\underline{x}^{(2)} = (0, \, 0, \, 1, \, \hspace{0.05cm} \text{...} \hspace{0.05cm}).

6

What are the first three bits of the code sequence  \underline{x}^{(3)}?

\underline{x}^{(3)} = (0, \, 1, \, 1, \, \hspace{0.05cm} \text{...} \hspace{0.05cm}),
\underline{x}^{(3)} = (1, \, 0, \, 0, \, \hspace{0.05cm} \text{...} \hspace{0.05cm}),
\underline{x}^{(3)} = (0, \, 0, \, 1, \, \hspace{0.05cm} \text{...} \hspace{0.05cm}).


Solution

(1)  The generator matrix of a convolutional code has the general form:

{ \boldsymbol{\rm G}}=\begin{pmatrix} { \boldsymbol{\rm G}}_0 & { \boldsymbol{\rm G}}_1 & { \boldsymbol{\rm G}}_2 & \cdots & { \boldsymbol{\rm G}}_m & & & \\ & { \boldsymbol{\rm G}}_0 & { \boldsymbol{\rm G}}_1 & { \boldsymbol{\rm G}}_2 & \cdots & { \boldsymbol{\rm G}}_m & &\\ & & { \boldsymbol{\rm G}}_0 & { \boldsymbol{\rm G}}_1 & { \boldsymbol{\rm G}}_2 & \cdots & { \boldsymbol{\rm G}}_m &\\ & & & \ddots & \ddots & & & \ddots \end{pmatrix}\hspace{0.05cm}.
  • From the graph on the information page,  the  k × n  partial matrices can be determined:
{ \boldsymbol{\rm G}}_0=\begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}\hspace{0.05cm},\hspace{0.2cm} { \boldsymbol{\rm G}}_1=\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}\hspace{0.05cm},\hspace{0.2cm} { \boldsymbol{\rm G}}_2=\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}\hspace{0.05cm}.
  • The code parameters are thus:  \underline{n = 4},     \underline{k = 3},     \underline{m = 2}.


Hints:

  1. The represented part of  \mathbf{G}  would have the same appearance for  m > 2  as for  m = 2.
  2. This is why the additional specification  m ≤ 2  was necessary.


(2)  All proposed solutions  are correct.  According to the specification sheet

{\boldsymbol{\rm G}}(D) = {\boldsymbol{\rm G}}_0 + {\boldsymbol{\rm G}}_1 \cdot D + {\boldsymbol{\rm G}}_2 \cdot D^2 = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1+D & 1+D & 1 \\ 0 & D & 1+D^2 & 1+D^2 \end{pmatrix}\hspace{0.05cm}.


(3)  After splitting the information sequence

\underline{u} = (0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm}, ... \hspace{0.05cm})

into the three partial sequences \underline{u}^{(1)}\underline{u}^{(2)}\underline{u}^{(3)}  and subsequent D–transformation we get:

\underline{u}^{(1)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm}) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\quad {U}^{(1)}(D) = D + D^2 \hspace{0.05cm},
\underline{u}^{(2)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm}) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\quad {U}^{(2)}(D) = 1+D \hspace{0.05cm},
\underline{u}^{(3)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} (\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm}) \quad \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\quad {U}^{(3)}(D) = 1 + D^2 \hspace{0.05cm}.
  • Accordingly,  only the  proposed solution 2  is correct.



(4)  In the first column of  \mathbf{G}(D)  there is only one  "1"  in row 1,  the other two matrix elements are zero.

  • This is a systematic code   ⇒   \underline{x}^{(1)} = \underline{u}^{(1)} = (0, \, 1, \, 1).
  • Correct is the   proposed solution 1.



(5)  The D–transform  X^{(2)}(D)  is obtained as the vector product

  • of the D–transform of the information sequence   ⇒   \underline{U}(D) = (U^{(1)}(D), \, U^{(2)}(D), \, U^{(3)}(D))
  • and the second column  of \mathbf{G}(D):
X^{(2)}(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} ( D + D^2) \cdot 1 + ( 1+D) \cdot ( 1+D) +( 1+D^2) \cdot D\hspace{0.03cm}=D + D^2 +1 +D +D + D^2 +D + D^3 = 1+D^3 \hspace{0.05cm}.


Correct is the  proposed solution 2:   \underline{x}^{(2)} = (1, \, 0, \, 0).  Since we are only interested in the first three bits,  the contribution  D^3  is not relevant.



(6)  Analogous to subtask  (5),  we obtain here:

X^{(3)}(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} ( D + D^2) \cdot 0 + ( 1+D) \cdot ( 1+D) +( 1+D^2) \cdot ( 1+D^2)=1 + D + D + D^2 +1 + D^2 + D^2 + D^4 = D^2 + D^4 \hspace{0.05cm}.
  • This gives  \underline{x}^{(3)} = (0, \, 0, \, 1)   ⇒   Proposed solution 3.
  • The same result is obtained for  \underline{x}^{(4)}.
\underline{x} = (0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm}, \hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}\text{ ...} \hspace{0.05cm})\hspace{0.05cm}.