Exercise 4.10: Binary and Quaternary

From LNTwww

Binary signal  $b(t)$,  quaternary signal  $q(t)$

We consider here a binay signal  $b(t)$  and a quaternary signal  $q(t)$.

  • The two signals are rectangular in shape.  The duration of each rectangle is  $T$  (symbol duration).
  • The symbols represented by the pulse heights of the individual rectangular pulses  $($with step number  $M = 2$  or  $M = 4)$  are statistically independent.
  • Because of the bipolar signal constellation,  both signals have no DC component if the symbol probabilities are chosen appropriately  (symmetrically).
  • Because of the latter property,  it follows for the probabilities of the binary symbols:
$${\rm Pr}\big[b(t) = +b_0\big] = {\rm Pr}\big[b(t) = -b_0\big] ={1}/{2}.$$
  • In contrast,  for the quarternary signal:
$${\rm Pr}\big[q(t) = +3 \hspace{0.05cm}{\rm V}\big] = {\rm Pr}\big[q(t) = -3 \hspace{0.05cm}{\rm V}\big]= {1}/{6},$$
$${\rm Pr}\big[q(t) = +1 \hspace{0.05cm}{\rm V}\big] = {\rm Pr}\big[q(t) = -1 \hspace{0.05cm}{\rm V}\big]= {2}/{6}.$$


Hint:  This exercise belongs to the chapter  Auto-Correlation Function.



Questions

1

Calculate the ACF value  $\varphi_q(\tau = 0)$  of the quaternary signal.

$\varphi_q(\tau = 0) \ = \ $

$\ \rm V^2$

2

What is the magnitude of the ACF value when  $\tau = T$ ? Justify why the ACF values for  $|\tau| > T$  are of the same size.  Sketch the ACF diagram.

$\varphi_q(\tau = T) \ = \ $

$\ \rm V^2$

3

With which amplitude values  $(\pm b_0)$  does the binary signal  $b(t)$  have exactly the same ACF?

$b_0\ = \ $

$\ \rm V$

4

Which of the following descriptive quantities of a stochastic process can be determined from the ACF?

Period duration.
Probability density function.
Linear mean value.
Variance.
3rd order moment.
Phase relations.


Solution

(1)  The ACF value at the point  $\tau = 0$  corresponds to the mean signal power, i.e. the variance of  $q(t)$.  For this holds:

Triangular auto-correlation function
$$\varphi_q(\tau = 0)= {1}/{6 } \cdot ({\rm 3\,V})^2 + {2}/{6 } \cdot ({\rm 1\,V})^2 + {2}/{6 } \cdot (-{\rm 1\,V})^2 + {1}/{6 } \cdot (-{\rm 3\,V})^2= \rm {22}/{6 }\, \rm V^2\hspace{0.15cm}\underline{= \rm 3.667 \,V^2}.$$


(2)  The individual symbols were assumed to be statistically independent.

  • Therefore,  and because of the lack of a DC component,  for any integer value of  $\nu$,  the following applies here:
$${\rm E} \big [ q(t) \cdot q ( t + \nu T) \big ] = {\rm E} \big [ q(t) \big ] \cdot {\rm E} \big [ q ( t + \nu T) \big ]\hspace{0.15cm}\underline{ = 0}.$$
  • Thus,  the ACF we are looking for has the shape sketched on the right.
  • In the range  $-T \le \tau \le +T$  the ACF is sectionwise linear,  i.e. triangular,  due to the rectangular pulse shape.


(3)  The  ACF $\varphi_b(\tau)$  of the binary signal is also identically zero due to the statistically independent symbols in the range  $| \tau| > T$. 

  • For  $-T \le \tau \le +T$  itnalso results in a triangular shape.
  • For the second moment,  one obtains:
$$\varphi_b (\tau = 0) = b_{\rm 0}^{\rm 2}.$$
  • With  $b_0\hspace{0.15cm}\underline{= 1.915\, \rm V}$  the two auto-correlation functions  $\varphi_q(\tau)$  and  $\varphi_b(\tau)$ are identical.


(4)  Correct are  the proposed solutions 1, 3, and 4.

From the autocorrelation function we can actually determine:

  • The period  $T_0$:   this is the same for the pattern signals and the ACF;
  • the linear mean:   root of the final value of the ACF for  $\tau \to \infty$; 
  • the variance:  difference of the ACF values of  $\tau = 0$  and  $\tau \to \infty$.


Cannot be determined:

  • The probability density function  $\rm (PDF)$:
          despite  $\varphi_q(\tau) =\varphi_b(\tau)$   ⇒   $f_q(q) \ne f_b(b)$;
  • the moments of higher order:
          for their calculation one needs the PDF;
  • all phase relations and symmetry properties are not recognizable from the ACF.