Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 4.3: Algebraic and Modulo Sum

From LNTwww

Algebraic & modulo–2 sum
Table for moment calculation

A  "clocked"  random number generator returns a sequence  xν  of binary random numbers.

  • It is assumed that the binary numbers  0  and  1  occur with equal probabilities and that the individual random numbers do not depend on each other.
  • The random numbers  xν{0,1}  are entered into the first memory location of a shift register and shifted down one digit with each clock pulse.


Two new random sequences  aν  and  mν  are formed from the contents of the three-digit shift register. Here denotes:

  • the  "algebraic sum"  aν:
aν=xν+xν1+xν2,
  • the  "modulo–2 sum"  mν:
mν=xνxν1xν2.








Hints:  


Questions

1

Calculate the probabilities of the random variable  mν.  What is the probability that the modulo-2 sum is equal to  0 ?

Pr(mν=0) = 

2

Are there statistical dependencies within the sequence  mν?

The sequence elements  mν  are statistically independent.
There are statistical bindings within the sequence  mν.

3

Determine the 2D–PDF  fxm(xν,mν).  Based on the result,  evaluate the following statements.

The random variables  xν  and  mν  are statistically dependent.
The random variables  xν  and  mν  are statistically independent.
The random variables  xν  and  mν  are correlated.
The random variables  xν  and  mν  are uncorrelated.

4

Do statistical dependencies exist within the sequence  aν ?

The sequence elements  aν  are statistically independent.
There are statistical bindings within the sequence  aν.

5

Determine the 2D–PDF  fam(aν,mν)  and the correlation coefficient  ρam.  Which of the following statements are true?

The random variables  aν  and  mν  are statistically dependent.
The random variables  aν  and  mν  are statistically independent.
The random variables  aν  and  mν  are correlated.
The random variables  aν  and  mν  are uncorrelated.


Solution

(1)  It can be seen from the table in the information section that for the modulo–2 sum,  the two values  0  and  1  have equal probability:

Pr(mν=0)=Pr(mν=1)=0.5_.


(2)  The table shows that for each preassignment   ⇒   (xν1,xν2)=(0,0),(0,1),(1,0),(1,1),  the values  mν=0  and  mν=1  resp. are equally likely.

  • Expressed differently:   Pr(mν|mν1)=Pr(mν).
  • This exactly matches the definition of  "statistical independence"   ⇒   Answer 1.


2D–PDF of  x  and  m

(3)  Correct are  the second and the last suggested solutions.

  • The 2D–PDF consists of four Dirac delta functions,  each with weight  1/4.
  • One obtains this result,  for example,  by evaluating the table in the data section.
  • Since  fxm(xν,mν)=fx(xν)fm(mν),  the quantities  xν  and  mν  are statistically independent.
  • Statistically independent random variables,  however,  are also linearly statistically independent,  so they are certainly uncorrelated.



(4)  Within the sequence  aν  of algebraic sum there are statistical bindings   ⇒   Answer 2.

  • You can see this because the unconditional probability is  Pr(aν=0)=1/8
  • while,  for example,  Pr(aν=0|aν1=3)=0  holds.


2D–PDF of  a  and  m

(5)  Correct are  the first and the last suggested solutions:

  • As in the subtask  (3)  there are again four Dirac delta functions,  but this time not with equal Dirac weights  1/4.
  • The two-dimensional PDF thus cannot be written as a product of the two marginal probability densities.
  • But this means that statistical bindings must exist between  aν  and  mν.
  • For the joint expected value,  one obtains:
E[am]=1800+3820+3811+1831=34.
  • With the linear means  E[a]=1.5  and  E[m]=0.5  it follows for the covariance:
μam=E[am]E[a]E[m]=0.751.50.5=0.
  • Thus,  the correlation coefficient  ρam=0.  That is:   The dependencies present are nonlinear.
  • The quantities  aν  and  mν  are statistically dependent,  but still uncorrelated.