Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Exercise 4.4: Extrinsic L-values at SPC

From LNTwww

Suitable auxiliary table

We consider again the  "single parity–check code".  In such a  SPC (n,n1,2)  the  n  bits of a code word  x_  come from the  k=n1  bits from the source sequence  u_  and only a single check bit  p  is added,  such that the number of  "ones"  in the code word  x_  is even:

x_=(x1,x2,...,xn1,xn)=(u1,u2,...,uk,p).

The extrinsic information about the  ith code bit is formed over all other bits  (ji).  Therefore we write for the code word shorter by one bit:

x_(i)=(x1,...,xi1,xi+1,...,xn).

The extrinsic  L–value over the  ith code symbol reads with the  "Hamming weight"  wH  of the truncated sequence  x_(i):

LE(i)=Pr[wH(x_(i))iseven|y_]Pr[wH(x_(i))isodd|y_].
  • If the probability in the numerator is greater than that in the denominator,  then  LE(i)>0  and thus the a-posteriori L–value  LAPP(i)=LA(i)+LE(i)  magnified,  that is tends to be affected in the direction of the symbol  xi=0.
  • If  LE(i)<0  then there is much to be said for  xi=1  from the point of view of the other symbols  (ji).


Only the  SPC (4, 3, 4)  is treated,  where for the probabilities  pi=Pr(xi=1)  holds:

p1=0.2,p2=0.9,p3=0.3,p4=0.6.

From this the a-priori log likelihood ratios result to:

LA(i)=ln[Pr(xi=0)Pr(xi=1)]=ln[1pipi].



Hints:

  • In the table are given for  pi=0  to  pi=1  with step size  0.1  (column 1):
In column 2:   the probability  qi=Pr(xi=0)=1pi,
in column 3:   the values for  12pi,
in column 4:   the a-priori log likelihood ratios  Li=ln[(1pi)/pi]=LA(i).
  • The  "hyperbolic tangent"  (tanh)  of Li/2  is identical to  12pi   ⇒   column 3.
LE(i)=ln1+π1π,mitπ=nji(12pj).


Questions

1

It holds  p1=0.2, p2=0.9, p3=0.3, p4=0.6.  From this,  calculate the a-priori log likelihood ratios of the  SPC (4, 3, 4)  for bit 1 and bit 2.

LA(i=1) = 

LA(i=2) = 

2

What are the extrinsic log likelihood ratios for bit 1 and bit 2.

LE(i=1) = 

LE(i=2) = 

3

What are the relationships between  pj  and  Lj=LA(j)?

It holds  pj=1/(1+eLj).
It holds  12pj=(eLj1) / (eLj+1).
It holds  12pj=tanh(Lj/2).

4

It is further  p1=0.2, p2=0.9, p3, p4=0.6.  Calculate the extrinsic log likelihood ratios for bit 3 and bit 4.  Use different equations for this purpose.

LE(i=3) = 

LE(i=4) = 


Solution

(1)  For the a-priori log likelihood ratios of the first two bits of the code word:

LA(i=1) = ln[1p1p1]=ln4=+1.386_,
LA(i=2) = ln[1p2p2]=ln1/9=2.197_.
  • The values can be read from the fourth column of the table attached to the information page.


(2)  To calculate the extrinsic L–value over the  ith bit,  only the information about the other three bits  (ji)  may be used.  With the given equation holds:

LE(i=1)=ln1+j1(12pj)1j1(12pj).
  • For the product,  we obtain according to the third column of the  table:
j=2,3,4(12pj)=(0.8)(+0.4)(0.2)=0.064LE(i=1)=ln1+0.06410.064=ln(1.137)=+0.128_.
  • In terms of bit 2,  one obtains accordingly:
j=1,3,4(12pj)=(+0.6)(+0.4)(0.2)=0.048LE(i=2)=ln10.0481+0.048=ln(0.908)=0.096_.


(3)  For the a-priori L– value holds:

Lj=LA(j)=ln[Pr(xj=0)Pr(xj=1)]=ln[1pjpj]1pj=pjeLjpj=11+eLj.
  • Thus also applies:
12pj=121+eLj=1+eLj21+eLj=eLj1eLj+1.
  • Multiplying the numerator and denominator by  eLj/2,  we get:
12pj=eLj/2eLj/2eLj/2+eLj/2=tanh(Lj/2).
  • Thus  all proposed solutions are correct.
  • The function  "hyperbolic tangent"  can be found,  for example,  in tabular form in formula collections or in the last column of the table given in front.


(4)  We first calculate  LE(i=3)  in the same way as in subtask  (2):

j=1,2,4(12pj)=(+0.6)(0.8)(0.2)=+0.096LE(i=3)=ln1+0.09610.096=ln(1.212)=+0.193_.
  • We calculate the extrinsic L–value with respect to the last bit according to the equation
LE(i=4)=ln1+π1π,withπ=tanh(L1/2)tanh(L2/2)tanh(L3/2).
p1=0.2L1=+1.386L1/2=+0.693tanh(L1/2)=e+0.693e0.693e+0.693+e0.693=0.6identischmit12p1,
p2=0.9L2=2.197L2/2=1.099tanh(L2/2)=e1.099e+1.099e1.099+e+1.099=0.8identischmit12p2,
p3=0.3L3=0.847L3/2=+0.419tanh(L3/2)=e+0.419e0.419e+0.419+e0.419=0.4identischmit12p3.
  • The final result is thus:
π=(+0.6)(0.8)(+0.4)=0.192LE(i=4)=ln10.1921+0.192=0.389_.