Statistical Dependence and Independence

From LNTwww

General definition of statistical dependence


So far we have not paid much attention to  »statistical dependence«  between events,  even though we have already used it as in the case of two  »disjoint sets«:  

  • If an element belongs to  A
  • it cannot with certainty also be contained in the disjoint set  B.


The strongest form of dependence at all is such a  »deterministic dependence«  between two sets or two events.  Less pronounced is the statistical dependence.  Let us start with its complement:

Definitions: 

(1)  Two events  A  and  B  are called  »statistically independent«,  if the probability of the intersection  AB  is equal to the product of the individual probabilities:

Pr(AB)=Pr(A)Pr(B).

(2)  If this condition is not satisfied,  then the events  A  and  B  are »statistically dependent«:

Pr(AB)Pr(A)Pr(B).


  • In some applications,  statistical independence is obvious,  for example,  in the  »coin toss«  experiment.  The probability for  »heads«  or  »tails«  is independent of whether  »heads«  or  »tails«  occurred in the last toss.
  • And also the individual results in the random experiment  »throwing a roulette ball«  are always statistically independent of each other under fair conditions,  even if individual system players do not want to admit this.
  • In other applications,  on the other hand,  the question whether two events are statistically independent or not is not or only very difficult to answer instinctively.  Here one can only arrive at the correct answer by checking the formal independence criterion given above,  as the following example will show.


Example 1:  We consider the experiment  »throwing two dice«,  where the two dice  (in graphic:  "cubes")  can be distinguished by their colors red  (R)  and blue  (B).  The graph illustrates this fact,  where the sum  S=R+B  is entered in the two-dimensional field  (R,B).

For the following description we define the following events:

Examples for statistically independent events
  • A1:  The outcome of the red cube is  R<4  (red background)   ⇒   Pr(A1)=1/2,
  • A2:  The outcome of the blue cube is  B>4  (blue font)   ⇒   Pr(A2)=1/3,
  • A3:  The sum of the two cubes is  S=7  (green outline)   ⇒   Pr(A3)=1/6,
  • A4:  The sum of the two cubes is  S=8    ⇒   Pr(A4)=5/36,
  • A5:  The sum of the two cubes is  S=10    ⇒   Pr(A5)=3/36.


The graph can be interpreted as follows:

  • The two events  A1  and  A2  are statistically independent because the probability  Pr(A1A2)=1/6  of the intersection is equal to the product of the two individual probabilities  Pr(A1)=1/2  and  Pr(A2)=1/3 .  Given the problem definition,  any other result would also have been very surprising.
  • But also the events  A1  and  A3  are statistically independent because of  Pr(A1)=1/2Pr(A3)=1/6  and  Pr(A1A3)=1/12.  The probability of intersection  (1/12)  arises because three of the  36  squares are both highlighted in red and outlined in green.
  • In contrast,  there are statistical bindings between  A1  and  A4  because the probability of intersection   ⇒   Pr(A1A4)=1/18=4/72  is not equal to the product  Pr(A1)Pr(A4)=1/25/36=5/72 .
  • The two events  A1  and  A5  are even disjoint   ⇒   Pr(A1A5)=0:   none of the boxes with red background is labeled  S=10 .


This example shows that disjunctivity is a particularly pronounced form of statistical dependence.

Conditional probability


If there are statistical bindings between the two events  A  and  B,  the  (unconditional)  probabilities  Pr(A)  and  Pr(B)  do not describe the situation unambiguously in the statistical sense.  So-called  »conditional probabilities«  are then required.

Definitions: 

(1)  The  »conditional probability« of  A  under condition  B  can be calculated as follows:

Pr(A|B)=Pr(AB)Pr(B).

(2)  Similarly,  the conditional probability of  B  under condition  A  is:

Pr(B|A)=Pr(AB)Pr(A).

(3)  Combining these two equations,  we get  Bayes'  theorem:

Pr(B|A)=Pr(A|B)Pr(B)Pr(A).


Below are some properties of conditional probabilities:

  1. Also a conditional probability lies always between  0  and  1  including these two limits:   0Pr(A|B)1.
  2. With constant condition  B,  all calculation rules given in the chapter  »Set Theory Basics«  for the unconditional probabilities  Pr(A)  and  Pr(B)  still apply.
  3. If the existing events  A  and  B  are disjoint,  then  Pr(A|B)=Pr(B|A)=0  (agreement:  event  A  »exists«  if  Pr(A)>0).
  4. If  B  is a proper or improper subset of  A,  then  Pr(A|B)=1.  
  5. If two events  A  and  B are statistically independent,  their conditional probabilities are equal to the unconditional ones,  as the following calculation shows:
Pr(A|B)=Pr(AB)Pr(B)=Pr(A)Pr(B)Pr(B)=Pr(A).

Example 2:  We again consider the experiment  »Throwing two dice«,  where  S=R+B  denotes the sum of the red and blue dice  (cube).

Example of statistically dependent events

Here we consider bindings between the two events

  • A1:  »The outcome of the red cube is  R<4 «  (red background)   ⇒   Pr(A1)=1/2,
  • A4:  »The sum of the two cubes is  S=8 «  (green outline)   ⇒   Pr(A4)=5/36,


and refer again to the event of  Example 1

  • A3:  »The sum of the two cubes is  S=7 «   ⇒   Pr(A3)=1/6.


Regarding this graph,  note:

  • There are statistical bindings between the both events  A1  and  A4,  since the probability of intersection   ⇒   Pr(A1A4)=2/36=4/72  is not equal to the product  Pr(A1)Pr(A4)=1/25/36=5/72.
  • The conditional probability  Pr(A1|A4)=2/5  can be calculated from the quotient of the  »joint probability«  Pr(A1A4)=2/36  and the absolute probability   Pr(A4)=5/36.
  • Since the events  A1  and  A4  are statistically dependent,  the conditional probability  Pr(A1|A4)=2/5  (two of the five squares outlined in green are highlighted in red)  is not equal to the absolute probability  Pr(A1)=1/2  (half of all squares are highlighted in red).
  • Similarly,  the conditional probability  Pr(A4|A1)=2/18=1/9  (two of the  18  fields with a red background are outlined in green)  is unequal to the absolute probability  Pr(A4)=5/36  (a total of five of the  36  fields are outlined in green).
  • This last result can also be derived using  »Bayes'  theorem«,   for example:
Pr(A4|A1)=Pr(A1|A4)Pr(A4)Pr(A1)=2/55/361/2=1/9.
  • In contrast,  the following conditional probabilities hold for  A1  and the statistically independent event  A3,  see  Example 1:
Pr(A1|A3)=Pr(A1)=1/2resp.Pr(A3|A1)=Pr(A3)=1/6.


General multiplication theorem


Furthermore,  we consider several events denoted as  Ai  with  1iI.  However,  these events  Ai  no longer represent a  »complete system« , viz:

  • They are not pairwise disjoint to each other. 
  • There may also be statistical bindings between the individual events.


Definition: 

(1)  For the so-called  »joint probability«, i.e. for the probability of the intersection of all  I  events  Ai  holds in this case:

Pr(A1 ...AI)=Pr(AI)Pr(AI1|AI)Pr(AI2|AI1AI) ...Pr(A1|A2 ...AI).

(2)  In the same way  holds:

Pr(A1 ...AI)=Pr(A1)Pr(A2|A1)Pr(A3|A1A2) ...Pr(AI|A1 ...AI1).


Example 3:  A lottery drum contains ten lots,  including three hits  (event  T1)

  • Then the probability of drawing two hits with two tickets is:
Pr(T1T2)=Pr(T1)Pr(T2|T1)=3/102/9=1/156.7%.
  • This takes into account that in the second draw  (event  T2)  there would be only nine tickets and two hits in the drum if one hit had been drawn in the first run:
Pr(T2|T1)=2/922.2%.
  • However,  if the tickets were returned to the drum after the draw,  the events  T1  and  T2  would be statistically independent and it would hold:
Pr(T1T2)=(3/10)2=9%.

Inference probability


Given again events  Ai  with  1iI  that form a  »complete system«.  That is:

  • All events are pairwise disjoint  (AiAj=ϕ  for all  ij ).
  • The union gives the universal set:
Ii=1Ai=G.

Besides,  we consider the event  B,  of which all conditional probabilities  Pr(B|Ai)  with indices  1iI  are known.

Theorem of total probability:  Under the above conditions,  the  »unconditional  probability« of event  B  is:

Pr(B)=Ii=1Pr(BAi)=Ii=1Pr(B|Ai)Pr(Ai).


Definition:  From this equation, using  Bayes' theorem:   ⇒   »Inference probability«:

Pr(Ai|B)=Pr(BAi)Pr(Ai)Pr(B)=Pr(B|Ai)Pr(Ai)Ik=1Pr(B|Ak)Pr(Ak).


Example 4:  Munich's student hostels are occupied by students from

  • Ludwig Maximilian Universiy of Munich  (event  L   ⇒   Pr(L)=70%)  and
  • Technical University of Munich  (event  T   ⇒   Pr(T)=30%).


It is further known that at LMU  60%  of all students are female,  whereas at TUM only  10%  are female.

  • The proportion of all female students in the hostel  (event F)  can then be determined using the total probability theorem:
Pr(F)=Pr(F|L)Pr(L)+Pr(F|T)Pr(T)=0.60.7+0.10.3=45%.
  • If we meet a female student, we can use the inference probability
Pr(LF)=Pr(FL)Pr(L)Pr(FL)Pr(L)+Pr(FT)Pr(T)=0.60.70.60.7+0.10.3=141593.3%
to predict that she will study at LMU.  A quite realistic result  (at least in the past).


⇒   The topic of this chapter is illustrated with examples in the  (German language)  learning video

»Statistische Abhängigkeit und Unabhängigkeit«     »Statistical Dependence and Independence«.

Exercises for the chapter


Exercise 1.4: 2S/3E Channel Model

Exercise 1.4Z: Sum of Ternary Quantities

Exercise 1.5: Drawing Cards

Exercise 1.5Z: Probabilities of Default