Difference between revisions of "Applets:Period Duration of Periodic Signals"

From LNTwww
Line 55: Line 55:
  
 
[[File:Aufgaben_2D-Gauss.png|right]]
 
[[File:Aufgaben_2D-Gauss.png|right]]
*Wählen Sie zunächst die Nummer  $(1,\ 2$, ... $)$  der zu bearbeitenden Aufgabe.
+
* First select the number&nbsp; (<b>1</b>, <b>2</b>, ... )&nbsp; of the exercise. <br>
*Eine Aufgabenbeschreibung wird angezeigt.&nbsp; Parameterwerte sind angepasst.
+
* An exercise description is displayed.&nbsp; Parameter values are adjusted.<br>
*Lösung nach Drücken von &bdquo;Musterlösung&rdquo;.
+
* Solution after pressing "Show solution".<br>
*Die Nummer&nbsp; $0$&nbsp; entspricht &bdquo;Reset&rdquo;:&nbsp; Einstellung wie beim Programmstart.
+
* The number&nbsp; '''0'''&nbsp; corresponds to a&nbsp; "Reset":&nbsp; Same setting as at the program start. <br>
*$A_1'$&nbsp; und&nbsp; $A_2'$&nbsp; bezeichnen hier die auf&nbsp; $1\ \rm V$&nbsp; normierten  Signalamplituden.  
+
* $A_1'$&nbsp; and&nbsp; $A_2'$&nbsp; denote the signal amplitudes normalized to&nbsp; $1\ \rm V$. <br>
*$f_0'$,&nbsp; $f_1'$&nbsp; und&nbsp; $f_2'$&nbsp; sind die auf&nbsp; $1\ \rm kHz$&nbsp; normierten Frequenzen.
+
* $f_0'$,&nbsp; $f_1'$&nbsp; and&nbsp; $f_2'$&nbsp; are the frequencies normalized to&nbsp; $1\ \rm kHz$.
 
+
<br clear=all>
 
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(1)''' &nbsp; Es gelte&nbsp; $A_1' = 1.0, \ A_2' = 0.5, \ f_1' = 2.0, \ f_2' = 2.5, \ \varphi_1 = 0^\circ \ \varphi_2 = 90^\circ\text{.}$<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;  
+
'''(1)''' &nbsp; Consider&nbsp; $A_1' = 1.0, \ A_2' = 0.5, \ f_1' = 2.0, \ f_2' = 2.5, \ \varphi_1 = 0^\circ \ \varphi_2 = 90^\circ$.&nbsp; How large is the period&nbsp; $T_0$?}}  
Wie groß ist die Periodendauer&nbsp; $T_0$?}}  
 
  
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer ist&nbsp; $T_0 = 2.0 \ \rm ms$&nbsp; wegen&nbsp; ${\rm ggt}(2.0, 2.5) = 0.5$.
+
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$The period is&nbsp; $T_0 = 2.0 \ \rm ms$ &nbsp; due to &nbsp; $\rm{gcd}(2.0, 2.5) = 0.5$.
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(2)''' &nbsp; Variieren Sie&nbsp; $\varphi_1$&nbsp; und&nbsp; $\varphi_2$&nbsp; im gesamten möglichen Bereich $\pm 180^\circ\text{.}$<br>
+
'''(2)''' &nbsp; Vary&nbsp; $\varphi_1$&nbsp; and&nbsp; $\varphi_2$&nbsp; in the whole possible range&nbsp;
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Wie wirkt sich dies auf die Periodendauer&nbsp; $T_0$&nbsp; aus?}}
+
$\pm 180^\circ$.&nbsp; How does this affect the period&nbsp; $T_0$?
 +
}}
  
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer&nbsp; $T_0 = 2.0 \ \rm ms$&nbsp; bleibt für alle&nbsp; $\varphi_1$&nbsp; und&nbsp; $\varphi_2$&nbsp; erhalten.
+
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$The period&nbsp; $T_0 = 2.0 \ \rm ms$&nbsp; remains the same for all&nbsp; $\varphi_1$&nbsp; and&nbsp; $\varphi_2$.
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(3)''' &nbsp; Wählen Sie die Voreinstellung  &nbsp; &rArr; &nbsp; &bdquo;Recall Parameters&rdquo;<br>
+
'''(3)''' &nbsp; Select the default setting &nbsp; &rArr; &nbsp; "Recall Parameters".&nbsp; Vary&nbsp; $A_1'$&nbsp; in the entire possible range&nbsp; $0 \le A_1' \le 1$.}}
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Variieren Sie&nbsp; $A_1'$&nbsp; im gesamten möglichen Bereich&nbsp; $0 \le A_1' \le 1\text{:}$.}}
 
  
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer&nbsp; $T_0 = 2.0 \ \rm ms$&nbsp; bleibt erhalten mit Ausnahme von&nbsp; $A_1' =0$.<br>$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$In letzerem Fall ist&nbsp; $T_0 = 0.4 \ \rm ms$.
+
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$The period&nbsp; $T_0 = 2.0 \ \rm ms$&nbsp; remains the same with the exception of&nbsp; $A_1' =0$.&nbsp; In the latter case:&nbsp; $T_0 = 0.4 \ \rm ms$.
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(4)''' &nbsp; Wählen Sie die Voreinstellung  &nbsp; &rArr; &nbsp; &bdquo;Recall Parameters&rdquo; und variieren Sie&nbsp; $f_2' $?<br>
+
'''(4)''' &nbsp; Choose the default setting &nbsp; &rArr; &nbsp; "Recall Parameters"&nbsp; and vary&nbsp; $f_2'$.&nbsp; Does this affect&nbsp; $T_0$?&nbsp; Which value is the result for&nbsp; $f_2' = 0.2$?}}
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Hat dies Auswirkungen auf&nbsp; $T_0$?&nbsp; Welcher Wert ergibt sich für&nbsp; $f_2' = 0.2$.}}
 
  
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer springt hin und her.<br>$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Für&nbsp; $f_2' = 0.2$&nbsp; ergibt sich&nbsp; $T_0 = 5.0 \ \rm ms$ &nbsp; wegen &nbsp; ${\rm ggt}(2.0, 0.2) = 0.2$.
+
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$The period jumps back and forth.&nbsp; For&nbsp; $f_2' = 0.2$&nbsp; the result is&nbsp; $T_0 = 5.0 \ \rm ms$&nbsp; because of $\ \rm{gcd} (2.0,0.2)=0.2$.
 +
.
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(5)''' &nbsp; Es gelte&nbsp; $A_1' = 1.0, \ A_2' = 0.5, \ f_1' = 0.2, \ f_2' = 2.5, \ \varphi_1 = 0^\circ \ \varphi_2 = 90^\circ\text{.}$<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;  Wie groß ist die Periodendauer&nbsp; $T_0$?&nbsp; Speichern Sie diese Einstellung mit &bdquo;Store  Parameters&rdquo;.}}
+
'''(5)''' &nbsp; Consider&nbsp; $A_1' = 1.0, \ A_2' = 0.5, \ f_1' = 0.2, \ f_2' = 2.5, \ \varphi_1 = 0^\circ \ \varphi_2 = 90^\circ$.&nbsp; How large is the period&nbsp; $T_0$?&nbsp; Save this setting with&nbsp;  
 +
"Store  Parameters".
 +
}}
  
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer ist&nbsp; $T_0 = 10.0 \ \rm ms$&nbsp; wegen&nbsp; ${\rm ggt}(0.2, 2.5) = 0.1$.
+
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$The period is&nbsp; $T_0 = 10.0 \ \rm ms$&nbsp; &nbsp; due to&nbsp; $\rm{gcd}(0.2, 2.5) = 0.1$.
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(6)''' &nbsp; Wählen Sie die letzte Einstellung  &nbsp; &rArr; &nbsp; &bdquo;Recall Parameters&rdquo; und ändern Sie&nbsp; $f_2' = 0.6$.<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;  Speichern Sie diese Einstellung mit &bdquo;Store Parameters&rdquo;:}}
+
'''(6)''' &nbsp; Select the last setting &nbsp; &rArr; &nbsp;"Recall Parameters"&nbsp; and change&nbsp; $f_2' = 0.6$.&nbsp; Save this setting with&nbsp; "Store Parameters".
 +
}}
  
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer ist&nbsp; $T_0 = 5.0 \ \rm ms$&nbsp; wegen&nbsp; ${\rm ggt}(0.2,0.6) = 0.2$.
+
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$The period is&nbsp; $T_0 = 5.0 \ \rm ms$&nbsp; due to &nbsp;$\rm{gcd}(0.2,0.6) = 0.2$.
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(7)''' &nbsp; Wie groß ist bei gleicher Einstellung der maximale Signalwert&nbsp; $x_{\rm max}\text{?}$}}
+
'''(7)''' &nbsp; How large is the maximum signal value&nbsp; $x_{\rm max}$&nbsp; with the same settings?`
 +
}}
 +
 
 +
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$&nbsp;$x_{\rm max} =x(t_* + i \cdot T_0) = 1.38 \ {\rm V} < A_1 + A_2$&nbsp; with&nbsp; $t_* = 0.3 \ \rm ms$&nbsp; and&nbsp; $T_0 = 5.0 \ \rm ms$.
  
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$&nbsp;$x_{\rm max} =x(t_* + i \cdot T_0) = 1.38 \ {\rm V} < A_1 + A_2$&nbsp; mit&nbsp; $t_* = 0.3 \ \rm ms$&nbsp; und&nbsp; $T_0 = 5.0 \ \rm ms$.
 
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(8)''' &nbsp; Welcher Unterschied ergibt sich mit&nbsp; $\varphi_2 = 0^\circ \hspace{0.1cm}\Rightarrow\hspace{0.1cm}$ Summe zweier Cosinusschwingungen?}}
+
'''(8)''' &nbsp; What changes with&nbsp; $\varphi_2 = 0^\circ$ &nbsp; &rArr; &nbsp; Sum of two cosine waves?}}
  
 
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$&nbsp;$t_* = 0$,&nbsp; $T_0 = 5.0 \ \rm ms$&nbsp; &rArr; &nbsp; $x_{\rm max}  =x(t_* + i \cdot T_0) = 1.5 \ {\rm V}=A_1 + A_2$.
 
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$&nbsp;$t_* = 0$,&nbsp; $T_0 = 5.0 \ \rm ms$&nbsp; &rArr; &nbsp; $x_{\rm max}  =x(t_* + i \cdot T_0) = 1.5 \ {\rm V}=A_1 + A_2$.
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(9)''' &nbsp; Nun gelte&nbsp; $\varphi_1 = \varphi_2 = 90^\circ \hspace{0.1cm}\Rightarrow\hspace{0.1cm}$ Summe zweier Sinusschwingungen:}}
+
'''(9)''' &nbsp; Now consider&nbsp; $\varphi_1 = \varphi_2 = 90^\circ$ &nbsp; &rArr; &nbsp; Sum of two sine waves?}}
  
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Der maximale Signalwert ist nun&nbsp; $x_{\rm max} = 1.07 \ {\rm V} < A_1 + A_2$.<br>$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$&nbsp;Dieser Wert ergibt sich mit&nbsp; $T_0 = 5.0 \ \rm ms$&nbsp; sowie&nbsp; $t_* = 0.6 \ \rm ms$&nbsp; bzw.&nbsp; $t_* = 1.9 \ \rm ms$.
+
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$The maximum signal value is now&nbsp; $x_{\rm{max}} = 1.07 \ \rm V < A_1 + A_2$.&nbsp;  
 +
This value results from&nbsp; $T_0 = 5.0 \ \rm ms$&nbsp; and&nbsp; $t_* = 0.6 \ \rm ms$&nbsp; or&nbsp; $t_* = 1.9 \ \rm ms$.
  
  

Revision as of 13:32, 19 November 2020

Open Applet in a new tab       Version with Exercises and Solutions in German


Applet Descripition


Dieses Applet zeichnet den Verlauf und berechnet die Periodendauer $T_0$ der periodischen Funktion

$$x(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)+A_2\cdot \cos\left(2\pi f_2\cdot t- \varphi_2\right).$$

Bitte beachten Sie:

  • Die Phasen $\varphi_i$ sind hier im Bogenmaß einzusetzen. Umrechnung aus dem Eingabewert:   $\varphi_i \text{[im Bogenmaß]} =\varphi_i \text{[in Grad]}/360 \cdot 2\pi$.
  • Ausgegeben werden auch der Maximalwert $x_{\rm max}$ und ein Signalwert $x(t_*)$ zu einer vorgebbaren Zeit $t_*$.
  • Das aufzurufende Applet verwendet die englischen Begriffe im Gegensatz zu dieser deutschen Beschreibung.


Die englische Beschreibung finden Sie unter Period Duration of Periodic Signals (derzeit noch nicht realisiert) .

Theoretical background


  • Ein periodisches Signal $x(t)$ liegt genau dann vor, wenn dieses nicht konstant ist und für alle beliebigen Werte von $t$ und alle ganzzahligen Werte von $i$ mit einem geeigneten $T_{0}$ gilt:   $x(t+i\cdot T_{0}) = x(t)$. Man bezeichnet $T_0$ als die Periodendauer und $f_0 = 1/T_0$ als die Grundfrequenz.
  • Bei einer harmonischen Schwingung $x_1(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)$ gilt $f_0 = f_1$ und $T_0 = 1/f_1$, unabhängig von der Phase $\varphi_1$ und der Amplitude $A_1 \ne 0$.


$\text{Berechnungsvorschrift:}$  Setzt sich das periodisches Signal $x(t)$ wie in diesem Applet aus zwei Anteilen $x_1(t)$ und $x_2(t)$ zusammen, dann gilt mit $A_1 \ne 0$, $f_1 \ne 0$, $A_2 \ne 0$, $f_2 \ne 0$ für Grundfrequenz und Periodendauer:

$$f_0 = {\rm ggT}(f_1, \ f_2) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}T_0 = 1/f_0,$$

wobei „ggT” den größten gemeinsamen Teiler bezeichnet.


$\text{Beispiele:}$   Im Folgenden bezeichnen $f_0'$, $f_1'$ und $f_2'$ die auf $1\ \rm kHz$ normierten Signalfrequenzen:

(a)   $f_1' = 1.0$,   $f_2' = 3.0$   ⇒   $f_0' = {\rm ggt}(1.0, \ 3.0) = 1.0$   ⇒   $T_0 = 1.0\ \rm ms$;

(b)   $f_1' = 1.0$,   $f_2' = 3.5$   ⇒   $f_0' = {\rm ggt}(1.0, \ 3.5)= 0.5$   ⇒   $T_0 = 2.0\ \rm ms$;

(c)   $f_1' = 1.0$,   $f_2' = 2.5$   ⇒   $f_0' = {\rm ggt}(1.0, \ 2.5) = 0.5$   ⇒   $T_0 = 2.0\ \rm ms$;

(d)   $f_1' = 0.9$,   $f_2' = 2.5$   ⇒   $f_0' = {\rm ggt}(0.9, \ 2.5) = 0.1$   ⇒   $T_0 = 10.0 \ \rm ms$;

(e)   $f_2' = \sqrt{2} \cdot f_1' $   ⇒   $f_0' = {\rm ggt}(f_1', \ f_2') \to 0$   ⇒   $T_0 \to \infty$  ⇒   Das Signal $x(t)$ ist nicht periodisch.


$\text{Anmerkung:}$  Die Periodendauer könnte auch als kleinstes gemeinsame Vielfache (kgV) entsprechend $T_0 = {\rm kgV}(T_1, \ T_2)$ ermittelt werden:

(c)   $T_1 = 1.0\ \rm ms$,   $T_2 = 0.4\ \rm kHz$   ⇒   $T_0 = {\rm kgV}(1.0, \ 0.4) \ \rm ms = 2.0\ \rm ms$

Bei allen anderen Parameterwerten würde es aber zu numerischen Problemen kommen, zum Beispiel

(a)   $T_1 = 1.0\ \rm ms$ und $T_2 = 0.333\text{...} \ \rm ms$ besitzen aufgrund der begrenzten Darstellung reeller Zahlen kein kleinstes gemeinsames Vielfaches.

Exercises

Aufgaben 2D-Gauss.png
  • First select the number  (1, 2, ... )  of the exercise.
  • An exercise description is displayed.  Parameter values are adjusted.
  • Solution after pressing "Show solution".
  • The number  0  corresponds to a  "Reset":  Same setting as at the program start.
  • $A_1'$  and  $A_2'$  denote the signal amplitudes normalized to  $1\ \rm V$.
  • $f_0'$,  $f_1'$  and  $f_2'$  are the frequencies normalized to  $1\ \rm kHz$.


(1)   Consider  $A_1' = 1.0, \ A_2' = 0.5, \ f_1' = 2.0, \ f_2' = 2.5, \ \varphi_1 = 0^\circ \ \varphi_2 = 90^\circ$.  How large is the period  $T_0$?

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$The period is  $T_0 = 2.0 \ \rm ms$   due to   $\rm{gcd}(2.0, 2.5) = 0.5$.

(2)   Vary  $\varphi_1$  and  $\varphi_2$  in the whole possible range  $\pm 180^\circ$.  How does this affect the period  $T_0$?

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$The period  $T_0 = 2.0 \ \rm ms$  remains the same for all  $\varphi_1$  and  $\varphi_2$.

(3)   Select the default setting   ⇒   "Recall Parameters".  Vary  $A_1'$  in the entire possible range  $0 \le A_1' \le 1$.

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$The period  $T_0 = 2.0 \ \rm ms$  remains the same with the exception of  $A_1' =0$.  In the latter case:  $T_0 = 0.4 \ \rm ms$.

(4)   Choose the default setting   ⇒   "Recall Parameters"  and vary  $f_2'$.  Does this affect  $T_0$?  Which value is the result for  $f_2' = 0.2$?

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$The period jumps back and forth.  For  $f_2' = 0.2$  the result is  $T_0 = 5.0 \ \rm ms$  because of $\ \rm{gcd} (2.0,0.2)=0.2$. .

(5)   Consider  $A_1' = 1.0, \ A_2' = 0.5, \ f_1' = 0.2, \ f_2' = 2.5, \ \varphi_1 = 0^\circ \ \varphi_2 = 90^\circ$.  How large is the period  $T_0$?  Save this setting with  "Store Parameters".

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$The period is  $T_0 = 10.0 \ \rm ms$    due to  $\rm{gcd}(0.2, 2.5) = 0.1$.

(6)   Select the last setting   ⇒  "Recall Parameters"  and change  $f_2' = 0.6$.  Save this setting with  "Store Parameters".

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$The period is  $T_0 = 5.0 \ \rm ms$  due to  $\rm{gcd}(0.2,0.6) = 0.2$.

(7)   How large is the maximum signal value  $x_{\rm max}$  with the same settings?`

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$ $x_{\rm max} =x(t_* + i \cdot T_0) = 1.38 \ {\rm V} < A_1 + A_2$  with  $t_* = 0.3 \ \rm ms$  and  $T_0 = 5.0 \ \rm ms$.

(8)   What changes with  $\varphi_2 = 0^\circ$   ⇒   Sum of two cosine waves?

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$ $t_* = 0$,  $T_0 = 5.0 \ \rm ms$  ⇒   $x_{\rm max} =x(t_* + i \cdot T_0) = 1.5 \ {\rm V}=A_1 + A_2$.

(9)   Now consider  $\varphi_1 = \varphi_2 = 90^\circ$   ⇒   Sum of two sine waves?

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$The maximum signal value is now  $x_{\rm{max}} = 1.07 \ \rm V < A_1 + A_2$.  This value results from  $T_0 = 5.0 \ \rm ms$  and  $t_* = 0.6 \ \rm ms$  or  $t_* = 1.9 \ \rm ms$.


Applet Manual

Screenshot

    (A)     Parametereingabe per Slider

    (B)     Bereich der graphischen Darstellung

    (C)     Variationsmöglichkeit für die graphische Darstellung

    (D)     Abspeichern und Zurückholen von Parametersätzen

    (E)     Numerikausgabe des Hauptergebnisses $T_0$; graphische Verdeutlichung durch rote Linie

    (F)     Ausgabe von $x_{\rm max}$ und der Signalwerte $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$

    (G)     Darstellung der Signalwerte $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$ durch grüne Punkte

    (H)     Einstellung der Zeit $t_*$ für die Signalwerte $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$

Details zum obigen Punkt (C)

    (*)   Zoom–Funktionen „$+$” (Vergrößern), „$-$” (Verkleinern) und $\rm o$ (Zurücksetzen)

    (*)   Verschieben mit „$\leftarrow$” (Ausschnitt nach links, Ordinate nach rechts), „$\uparrow$” „$\downarrow$” und „$\rightarrow$”

Andere Möglichkeiten:

    (*)   Gedrückte Shifttaste und Scrollen: Zoomen im Koordinatensystem,

    (*)   Gedrückte Shifttaste und linke Maustaste: Verschieben des Koordinatensystems.


About the Authors

Dieses interaktive Berechnungstool wurde am Lehrstuhl für Nachrichtentechnik der Technischen Universität München konzipiert und realisiert.

  • Die erste Version wurde 2004 von Ji Li im Rahmen ihrer Diplomarbeit mit „FlashMX–Actionscript” erstellt (Betreuer: Günter Söder ).
  • 2017 wurde dieses Programm von David Jobst im Rahmen seiner Ingenieurspraxis (Betreuer: Tasnád Kernetzky) auf „HTML5” umgesetzt und neu gestaltet   ⇒   Applet-Variante 1.
  • Parallel dazu erarbeitete Bastian Siebenwirth im Rahmen seiner Bachelorarbeit (Betreuer: Günter Söder) die HTML5-Variante 2.

Once again: Open Applet in new Tab

Open Applet in a new tab       Version with Exercises and Solutions in German