Difference between revisions of "Applets:Period Duration of Periodic Signals"

From LNTwww
 
(11 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{LntAppletLink|signalPeriod_en}}        
+
{{LntAppletLinkEnDe|signalPeriod_en|signalPeriod}}
[https://www.lntwww.de/Applets:Periodendauer_periodischer_Signale '''Version with Exercises and Solutions in German''']
 
  
  
Line 9: Line 8:
  
 
Please note:  
 
Please note:  
*The phases  $\varphi_i$  must be entered here in radians.  Conversion from the input value:   $\varphi_i \text{[in radians]} =\varphi_i \text{[in degrees]}/360 \cdot 2\pi$.
+
*The phases  $\varphi_i$  must be entered here in radians.  Conversion from the input value:    
 +
:$$\varphi_i \text{[in radians]} =\varphi_i \text{[in degrees]}/360 \cdot 2\pi.$$
 
*The maximum value  $x_{\rm max}$  and a signal value  $x(t_*)$  at a given time  $t_*$ are also output.
 
*The maximum value  $x_{\rm max}$  and a signal value  $x(t_*)$  at a given time  $t_*$ are also output.
  
Line 15: Line 15:
 
==Theoretical background==
 
==Theoretical background==
 
<br>
 
<br>
A ''periodic signal''&nbsp; $x(t)$&nbsp; is present exactly when it is not constant and for all arbitrary values of&nbsp; $t$&nbsp; and all integer values of&nbsp; $i$&nbsp; with an appropriate&nbsp; $T_{0}$&nbsp; applies: &nbsp; $x(t+i\cdot T_{0}) = x(t).$  
+
A periodic signal&nbsp; $x(t)$&nbsp; is present exactly when it is not constant and if for all arbitrary values of&nbsp; $t$&nbsp; and all integer values of&nbsp; $i$&nbsp; with an appropriate&nbsp; $T_{0}$&nbsp; applies: &nbsp;  
 +
:$$x(t+i\cdot T_{0}) = x(t).$$  
 
*$T_0$&nbsp; is called the&nbsp; '''period duration''' &nbsp; and&nbsp; $f_0 = 1/T_0$&nbsp; the&nbsp; '''basic frequency'''.
 
*$T_0$&nbsp; is called the&nbsp; '''period duration''' &nbsp; and&nbsp; $f_0 = 1/T_0$&nbsp; the&nbsp; '''basic frequency'''.
  
Line 30: Line 31:
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiele:}$ &nbsp; Im Folgenden bezeichnen $f_0'$, $f_1'$ und $f_2'$ die auf $1\ \rm kHz$ normierten Signalfrequenzen:  
+
$\text{Examples:}$ &nbsp; In the following&nbsp; $f_0'$,&nbsp; $f_1'$&nbsp; and $f_2'$&nbsp;  denote signal frequencies normalized to $1\ \rm kHz$:  
  
'''(a)''' &nbsp; $f_1' = 1.0$, &nbsp; $f_2' = 3.0$ &nbsp; &rArr; &nbsp; $f_0' = {\rm ggt}(1.0, \ 3.0) = 1.0$ &nbsp; &rArr; &nbsp; $T_0 =  1.0\ \rm ms$;
+
'''(a)''' &nbsp; $f_1' = 1.0$, &nbsp; $f_2' = 3.0$ &nbsp; &rArr; &nbsp; $f_0' = {\rm gcd}(1.0, \ 3.0) = 1.0$ &nbsp; &rArr; &nbsp; $T_0 =  1.0\ \rm ms$;
  
'''(b)''' &nbsp; $f_1' = 1.0$, &nbsp; $f_2' = 3.5$ &nbsp; &rArr; &nbsp; $f_0' = {\rm ggt}(1.0, \ 3.5)= 0.5$ &nbsp; &rArr; &nbsp; $T_0 =  2.0\ \rm ms$;
+
'''(b)''' &nbsp; $f_1' = 1.0$, &nbsp; $f_2' = 3.5$ &nbsp; &rArr; &nbsp; $f_0' = {\rm gcd}(1.0, \ 3.5)= 0.5$ &nbsp; &rArr; &nbsp; $T_0 =  2.0\ \rm ms$;
  
'''(c)''' &nbsp; $f_1' = 1.0$, &nbsp; $f_2' = 2.5$ &nbsp; &rArr; &nbsp; $f_0' = {\rm ggt}(1.0, \ 2.5) = 0.5$ &nbsp; &rArr; &nbsp; $T_0 =  2.0\ \rm ms$;
+
'''(c)''' &nbsp; $f_1' = 1.0$, &nbsp; $f_2' = 2.5$ &nbsp; &rArr; &nbsp; $f_0' = {\rm gcd}(1.0, \ 2.5) = 0.5$ &nbsp; &rArr; &nbsp; $T_0 =  2.0\ \rm ms$;
  
'''(d)''' &nbsp; $f_1' = 0.9$, &nbsp; $f_2' = 2.5$ &nbsp; &rArr; &nbsp; $f_0' = {\rm ggt}(0.9, \ 2.5) = 0.1$ &nbsp; &rArr; &nbsp; $T_0 =  10.0 \ \rm ms$;
+
'''(d)''' &nbsp; $f_1' = 0.9$, &nbsp; $f_2' = 2.5$ &nbsp; &rArr; &nbsp; $f_0' = {\rm gcd}(0.9, \ 2.5) = 0.1$ &nbsp; &rArr; &nbsp; $T_0 =  10.0 \ \rm ms$;
  
'''(e)''' &nbsp; $f_2' = \sqrt{2} \cdot f_1' $ &nbsp; &rArr; &nbsp; $f_0' = {\rm ggt}(f_1', \ f_2') \to 0$ &nbsp; &rArr; &nbsp; $T_0 \to \infty$&nbsp; &rArr; &nbsp; Das Signal $x(t)$ ist nicht periodisch.}}
+
'''(e)''' &nbsp; $f_2' = \sqrt{2} \cdot f_1' $ &nbsp; &rArr; &nbsp; $f_0' = {\rm gcd}(f_1', \ f_2') \to 0$ &nbsp; &rArr; &nbsp; $T_0 \to \infty$&nbsp; &rArr; &nbsp; the signal&nbsp; $x(t)$&nbsp; is not periodic.}}
  
  
$\text{Anmerkung:}$&nbsp; Die Periodendauer könnte auch als ''kleinstes gemeinsame Vielfache'' (kgV) entsprechend $T_0 = {\rm kgV}(T_1, \ T_2)$ ermittelt werden:
+
$\text{Note:}$&nbsp; The period duration could also be determined as&nbsp; '''least common multiple'''&nbsp; $\rm (lcm)$&nbsp; according to&nbsp; $T_0 = {\rm lcm}(T_1, \ T_2)$:
  
'''(c)''' &nbsp; $T_1 = 1.0\ \rm ms$, &nbsp; $T_2 = 0.4\ \rm kHz$ &nbsp; &rArr; &nbsp; $T_0 = {\rm kgV}(1.0, \ 0.4) \ \rm ms =  2.0\ \rm ms$
+
:'''(c)''' &nbsp; $T_1 = 1.0\ \rm ms$, &nbsp; $T_2 = 0.4\ \rm kHz$ &nbsp; &rArr; &nbsp; $T_0 = {\rm lcm}(1.0, \ 0.4) \ \rm ms =  2.0\ \rm ms$
  
Bei allen anderen Parameterwerten würde es aber zu numerischen Problemen kommen, zum Beispiel
+
With all other parameter values, however, there would be numerical problems, for example
  
'''(a)''' &nbsp; $T_1 = 1.0\ \rm ms$ und $T_2 = 0.333\text{...} \ \rm ms$ besitzen aufgrund der begrenzten Darstellung reeller Zahlen kein kleinstes gemeinsames Vielfaches.  
+
:'''(a)''' &nbsp; $T_1 = 1.0\ \rm ms$&nbsp; and&nbsp; $T_2 = 0.333\text{...} \ \rm ms$&nbsp; have no&nbsp; "least common multiple"&nbsp; due to the limited representation of real numbers.
  
 
==Exercises==
 
==Exercises==
  
[[File:Aufgaben_2D-Gauss.png|right]]
+
* First select the number&nbsp; (<b>1</b>, <b>2</b>, ... )&nbsp; of the exercise.&nbsp; The number&nbsp; '''0'''&nbsp; corresponds to a&nbsp; "Reset":&nbsp; Same setting as at the program start.
* First select the number&nbsp; (<b>1</b>, <b>2</b>, ... )&nbsp; of the exercise. <br>
+
* An exercise description is displayed.&nbsp; Parameter values are adjusted.&nbsp; Solution after pressing "Show solution".<br>
* An exercise description is displayed.&nbsp; Parameter values are adjusted.<br>
+
* $A_1'$&nbsp; and&nbsp; $A_2'$&nbsp; denote the signal amplitudes normalized to&nbsp; $1\ \rm V$.&nbsp;  $f_0'$,&nbsp; $f_1'$&nbsp; and&nbsp; $f_2'$&nbsp; are the frequencies normalized to&nbsp; $1\ \rm kHz$.
* Solution after pressing "Show solution".<br>
 
* The number&nbsp; '''0'''&nbsp; corresponds to a&nbsp; "Reset":&nbsp; Same setting as at the program start. <br>
 
* $A_1'$&nbsp; and&nbsp; $A_2'$&nbsp; denote the signal amplitudes normalized to&nbsp; $1\ \rm V$. <br>
 
* $f_0'$,&nbsp; $f_1'$&nbsp; and&nbsp; $f_2'$&nbsp; are the frequencies normalized to&nbsp; $1\ \rm kHz$.
 
 
<br clear=all>
 
<br clear=all>
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
Line 82: Line 79:
  
 
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$The period jumps back and forth.&nbsp; For&nbsp; $f_2' = 0.2$&nbsp; the result is&nbsp; $T_0 = 5.0 \ \rm ms$&nbsp; because of $\ \rm{gcd} (2.0,0.2)=0.2$.
 
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$The period jumps back and forth.&nbsp; For&nbsp; $f_2' = 0.2$&nbsp; the result is&nbsp; $T_0 = 5.0 \ \rm ms$&nbsp; because of $\ \rm{gcd} (2.0,0.2)=0.2$.
.
 
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
Line 117: Line 113:
  
 
==Applet Manual==
 
==Applet Manual==
[[File:Exercise_impuls.png |right|frame|Screenshot]]
+
[[File:Anleitung_Periodendauer.png|right|frame|Screenshot]]
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Parametereingabe per Slider
 
  
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; Bereich der graphischen Darstellung
+
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Parameter input for harmonic oscillation 1
  
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Variationsmöglichkeit für die  graphische Darstellung
+
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; Parameter input for harmonic oscillation 2 and time&nbsp; $t_*$.
  
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; Abspeichern und Zurückholen von Parametersätzen
+
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Numerical output of the main result&nbsp; $T_0$; graphical illustration by red line
  
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Numerikausgabe des Hauptergebnisses $T_0$; graphische Verdeutlichung durch rote Linie
+
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; Save parameter sets
  
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; Ausgabe von $x_{\rm max}$ und der Signalwerte $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$
+
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Retrieve parameter sets
  
&nbsp; &nbsp; '''(G)''' &nbsp; &nbsp; Darstellung der Signalwerte $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$ durch grüne Punkte
+
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; Output of&nbsp; $x_{\rm max}$&nbsp; and the signal values&nbsp; $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$
  
&nbsp; &nbsp; '''(H)''' &nbsp; &nbsp; Einstellung der Zeit $t_*$ für die Signalwerte $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$
+
&nbsp; &nbsp; '''(G)''' &nbsp; &nbsp; Graphic field for displaying the signals
  
'''Details zum obigen Punkt (C)'''
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; The signal values&nbsp; $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$&nbsp; are marked by green dots
 
&nbsp; &nbsp; '''(*)''' &nbsp; Zoom&ndash;Funktionen &bdquo;$+$&rdquo; (Vergrößern), &bdquo;$-$&rdquo; (Verkleinern) und $\rm o$ (Zurücksetzen)
 
  
&nbsp; &nbsp; '''(*)''' &nbsp; Verschieben mit &bdquo;$\leftarrow$&rdquo; (Ausschnitt nach links, Ordinate nach rechts), &bdquo;$\uparrow$&rdquo; &bdquo;$\downarrow$&rdquo; und &bdquo;$\rightarrow$&rdquo;
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;  At the bottom of the graphic field you will find the following buttons:
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; '''(1)''' &nbsp; &nbsp; Zoom funktions:&nbsp; &nbsp; "$+$" (Zoom In),&nbsp; &nbsp;  "$-$" (Zoom Out),&nbsp; &nbsp; $\rm o$ (Reset)
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; '''(2)''' &nbsp; &nbsp; Move with&nbsp; &nbsp; "←"&nbsp; &nbsp; (Section to the left, ordinate to the right),&nbsp; &nbsp;  "$\uparrow$"&nbsp; &nbsp; "$\downarrow$", &nbsp; &nbsp; "$\rightarrow$"
 +
 
 +
&nbsp; &nbsp; '''(H)''' &nbsp; &nbsp; Task selection according to the task number
 +
<br><br>
 +
In all applets top right:&nbsp; &nbsp; Changeable graphical interface design &nbsp; &rArr; &nbsp; '''Theme''':
 +
* Dark: &nbsp; black background&nbsp; (recommended by the authors).
 +
* Bright: &nbsp; white background&nbsp; (recommended for beamers and printouts)
 +
* Deuteranopia: &nbsp; for users with pronounced green&ndash;visual impairment
 +
* Protanopia: &nbsp; for users with pronounced red&ndash;visual impairment
  
'''Andere Möglichkeiten''':
 
  
&nbsp; &nbsp; '''(*)''' &nbsp; Gedrückte Shifttaste und Scrollen:  Zoomen im Koordinatensystem,
 
  
&nbsp; &nbsp; '''(*)''' &nbsp; Gedrückte Shifttaste und linke Maustaste: Verschieben des Koordinatensystems.
 
<br clear = all>
 
  
  
 
==About the Authors==
 
==About the Authors==
Dieses interaktive Berechnungstool  wurde am [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik] der [https://www.tum.de/ Technischen Universität München] konzipiert und realisiert.  
+
 
*Die erste Version wurde 2004 von [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Ji_Li_.28Bachelorarbeit_EI_2003.2C_Diplomarbeit_EI_2005.29|Ji Li]] im Rahmen ihrer Diplomarbeit mit &bdquo;FlashMX&ndash;Actionscript&rdquo; erstellt (Betreuer: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]] ).  
+
This interactive calculation tool was designed and implemented at the&nbsp; [https://www.ei.tum.de/en/lnt/home/ Institute for Communications Engineering]&nbsp; at the&nbsp; [https://www.tum.de/en Technical University of Munich].  
*2017 wurde dieses Programm  von [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#David_Jobst_.28Ingenieurspraxis_Math_2017.29|David Jobst]] im Rahmen seiner Ingenieurspraxis (Betreuer: [[Biografien_und_Bibliografien/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]]) auf  &bdquo;HTML5&rdquo; umgesetzt und neu gestaltet &nbsp; &rArr; &nbsp; Applet-Variante 1.
+
*The first German version was created in 2004 by&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Ji_Li_.28Bachelorarbeit_EI_2003.2C_Diplomarbeit_EI_2005.29|Ji Li]]&nbsp; as part of her diploma thesis with “FlashMX – Actionscript” (Supervisor: [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]).  
*Parallel dazu erarbeitete [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Bastian_Siebenwirth_.28Bachelorarbeit_LB_2017.29|Bastian Siebenwirth]] im Rahmen seiner Bachelorarbeit (Betreuer: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]])  die HTML5-Variante 2.
+
*In 2017 the program was redesigned by [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#David_Jobst_.28Ingenieurspraxis_Math_2017.29|David Jobst]] (Bachelor thesis LB, Supervisor:&nbsp;  [[Biographies_and_Bibliographies/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]] ) via "HTML5".
Translated with www.DeepL.com/Translator (free version)
+
* The English version was done in 2020 by&nbsp; [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Carolin_Mirschina_.28Ingenieurspraxis_Math_2019.2C_danach_Werkstudentin.29|Carolin Mirschina]].&nbsp;
 +
 
 +
 
  
 
==Once again: Open Applet in new Tab==
 
==Once again: Open Applet in new Tab==
{{LntAppletLink|signalPeriod_en}} &nbsp; &nbsp;  &nbsp; 
+
{{LntAppletLinkEnDe|signalPeriod_en|signalPeriod}}
[https://www.lntwww.de/Applets:Periodendauer_periodischer_Signale '''Version with Exercises and Solutions in German''']
 
 
<br><br>
 
<br><br>

Latest revision as of 20:05, 21 March 2023

Open Applet in new Tab   Deutsche Version Öffnen


Applet Descripition


This applet draws the course and calculates the period duration  $T_0$  of the periodic function

$$x(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)+A_2\cdot \cos\left(2\pi f_2\cdot t- \varphi_2\right).$$

Please note:

  • The phases  $\varphi_i$  must be entered here in radians.  Conversion from the input value:  
$$\varphi_i \text{[in radians]} =\varphi_i \text{[in degrees]}/360 \cdot 2\pi.$$
  • The maximum value  $x_{\rm max}$  and a signal value  $x(t_*)$  at a given time  $t_*$ are also output.


Theoretical background


A periodic signal  $x(t)$  is present exactly when it is not constant and if for all arbitrary values of  $t$  and all integer values of  $i$  with an appropriate  $T_{0}$  applies:  

$$x(t+i\cdot T_{0}) = x(t).$$
  • $T_0$  is called the  period duration   and  $f_0 = 1/T_0$  the  basic frequency.
  • For a harmonic oscillation  $x_1(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)$  applies  $f_0 = f_1$  and  $T_0 = 1/f_1$,  independent of the phase  $\varphi_1$  and the amplitude  $A_1 \ne 0$.


$\text{Calculation Rule: }$  If the periodic signal  $x(t)$  consists of two parts  $x_1(t)$  and  $x_2(t)$  like in this applet, then applies for the basic frequency and the period duration with  $A_1 \ne 0$,  $f_1 \ne 0$,  $A_2 \ne 0$,  $f_2 \ne 0$:

$$f_0 = {\rm gcd}(f_1, \ f_2) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}T_0 = 1/f_0.$$

Here  $\rm gcd$  denotes the greatest common divisor.


$\text{Examples:}$   In the following  $f_0'$,  $f_1'$  and $f_2'$  denote signal frequencies normalized to $1\ \rm kHz$:

(a)   $f_1' = 1.0$,   $f_2' = 3.0$   ⇒   $f_0' = {\rm gcd}(1.0, \ 3.0) = 1.0$   ⇒   $T_0 = 1.0\ \rm ms$;

(b)   $f_1' = 1.0$,   $f_2' = 3.5$   ⇒   $f_0' = {\rm gcd}(1.0, \ 3.5)= 0.5$   ⇒   $T_0 = 2.0\ \rm ms$;

(c)   $f_1' = 1.0$,   $f_2' = 2.5$   ⇒   $f_0' = {\rm gcd}(1.0, \ 2.5) = 0.5$   ⇒   $T_0 = 2.0\ \rm ms$;

(d)   $f_1' = 0.9$,   $f_2' = 2.5$   ⇒   $f_0' = {\rm gcd}(0.9, \ 2.5) = 0.1$   ⇒   $T_0 = 10.0 \ \rm ms$;

(e)   $f_2' = \sqrt{2} \cdot f_1' $   ⇒   $f_0' = {\rm gcd}(f_1', \ f_2') \to 0$   ⇒   $T_0 \to \infty$  ⇒   the signal  $x(t)$  is not periodic.


$\text{Note:}$  The period duration could also be determined as  least common multiple  $\rm (lcm)$  according to  $T_0 = {\rm lcm}(T_1, \ T_2)$:

(c)   $T_1 = 1.0\ \rm ms$,   $T_2 = 0.4\ \rm kHz$   ⇒   $T_0 = {\rm lcm}(1.0, \ 0.4) \ \rm ms = 2.0\ \rm ms$

With all other parameter values, however, there would be numerical problems, for example

(a)   $T_1 = 1.0\ \rm ms$  and  $T_2 = 0.333\text{...} \ \rm ms$  have no  "least common multiple"  due to the limited representation of real numbers.

Exercises

  • First select the number  (1, 2, ... )  of the exercise.  The number  0  corresponds to a  "Reset":  Same setting as at the program start.
  • An exercise description is displayed.  Parameter values are adjusted.  Solution after pressing "Show solution".
  • $A_1'$  and  $A_2'$  denote the signal amplitudes normalized to  $1\ \rm V$.  $f_0'$,  $f_1'$  and  $f_2'$  are the frequencies normalized to  $1\ \rm kHz$.


(1)   Consider  $A_1' = 1.0, \ A_2' = 0.5, \ f_1' = 2.0, \ f_2' = 2.5, \ \varphi_1 = 0^\circ \ \varphi_2 = 90^\circ$.  How large is the period  $T_0$?

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$The period is  $T_0 = 2.0 \ \rm ms$   due to   $\rm{gcd}(2.0, 2.5) = 0.5$.

(2)   Vary  $\varphi_1$  and  $\varphi_2$  in the whole possible range  $\pm 180^\circ$.  How does this affect the period  $T_0$?

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$The period  $T_0 = 2.0 \ \rm ms$  remains the same for all  $\varphi_1$  and  $\varphi_2$.

(3)   Select the default setting   ⇒   "Recall Parameters".  Vary  $A_1'$  in the entire possible range  $0 \le A_1' \le 1$.

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$The period  $T_0 = 2.0 \ \rm ms$  remains the same with the exception of  $A_1' =0$.  In the latter case:  $T_0 = 0.4 \ \rm ms$.

(4)   Choose the default setting   ⇒   "Recall Parameters"  and vary  $f_2'$.  Does this affect  $T_0$?  Which value is the result for  $f_2' = 0.2$?

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$The period jumps back and forth.  For  $f_2' = 0.2$  the result is  $T_0 = 5.0 \ \rm ms$  because of $\ \rm{gcd} (2.0,0.2)=0.2$.

(5)   Consider  $A_1' = 1.0, \ A_2' = 0.5, \ f_1' = 0.2, \ f_2' = 2.5, \ \varphi_1 = 0^\circ \ \varphi_2 = 90^\circ$.  How large is the period  $T_0$?  Save this setting with  "Store Parameters".

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$The period is  $T_0 = 10.0 \ \rm ms$    due to  $\rm{gcd}(0.2, 2.5) = 0.1$.

(6)   Select the last setting   ⇒  "Recall Parameters"  and change  $f_2' = 0.6$.  Save this setting with  "Store Parameters".

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$The period is  $T_0 = 5.0 \ \rm ms$  due to  $\rm{gcd}(0.2,0.6) = 0.2$.

(7)   How large is the maximum signal value  $x_{\rm max}$  with the same settings?`

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$ $x_{\rm max} =x(t_* + i \cdot T_0) = 1.38 \ {\rm V} < A_1 + A_2$  with  $t_* = 0.3 \ \rm ms$  and  $T_0 = 5.0 \ \rm ms$.

(8)   What changes with  $\varphi_2 = 0^\circ$   ⇒   Sum of two cosine waves?

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$ $t_* = 0$,  $T_0 = 5.0 \ \rm ms$  ⇒   $x_{\rm max} =x(t_* + i \cdot T_0) = 1.5 \ {\rm V}=A_1 + A_2$.

(9)   Now consider  $\varphi_1 = \varphi_2 = 90^\circ$   ⇒   Sum of two sine waves?

$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$The maximum signal value is now  $x_{\rm{max}} = 1.07 \ \rm V < A_1 + A_2$.  This value results from  $T_0 = 5.0 \ \rm ms$  and  $t_* = 0.6 \ \rm ms$  or  $t_* = 1.9 \ \rm ms$.


Applet Manual

Screenshot

    (A)     Parameter input for harmonic oscillation 1

    (B)     Parameter input for harmonic oscillation 2 and time  $t_*$.

    (C)     Numerical output of the main result  $T_0$; graphical illustration by red line

    (D)     Save parameter sets

    (E)     Retrieve parameter sets

    (F)     Output of  $x_{\rm max}$  and the signal values  $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$

    (G)     Graphic field for displaying the signals

                  The signal values  $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$  are marked by green dots

                  At the bottom of the graphic field you will find the following buttons:

                  (1)     Zoom funktions:    "$+$" (Zoom In),    "$-$" (Zoom Out),    $\rm o$ (Reset)

                  (2)     Move with    "←"    (Section to the left, ordinate to the right),    "$\uparrow$"    "$\downarrow$",     "$\rightarrow$"

    (H)     Task selection according to the task number

In all applets top right:    Changeable graphical interface design   ⇒   Theme:

  • Dark:   black background  (recommended by the authors).
  • Bright:   white background  (recommended for beamers and printouts)
  • Deuteranopia:   for users with pronounced green–visual impairment
  • Protanopia:   for users with pronounced red–visual impairment



About the Authors

This interactive calculation tool was designed and implemented at the  Institute for Communications Engineering  at the  Technical University of Munich.

  • The first German version was created in 2004 by  Ji Li  as part of her diploma thesis with “FlashMX – Actionscript” (Supervisor: Günter Söder).
  • In 2017 the program was redesigned by David Jobst (Bachelor thesis LB, Supervisor:  Tasnád Kernetzky ) via "HTML5".
  • The English version was done in 2020 by  Carolin Mirschina


Once again: Open Applet in new Tab

Open Applet in new Tab   Deutsche Version Öffnen