Difference between revisions of "Applets:Pulses and Spectra"

From LNTwww
 
(46 intermediate revisions by 6 users not shown)
Line 1: Line 1:
 +
{{LntAppletLinkEnDe|pulsesAndSpectra_en|pulsesAndSpectra}}
  
{{LntAppletLink|spektrum|Applet in neuem Tab öffnen}}
 
  
==Programmbeschreibung==
+
==Applet Description==
 
<br>
 
<br>
Dargestellt werden impulsförmige symmetrische Zeitsignale &nbsp; &rArr; &nbsp; &bdquo;Impulse&rdquo; $x(t)$ und die dazugehörigen Spektralfunktionen $X(f)$, nämlich
+
Time-limited symmetric signals &nbsp; &rArr; &nbsp; "pulses"&nbsp; $x(t)$&nbsp; and the corresponding spectral functions&nbsp; $X(f)$&nbsp; are considered, namely
*Gaußimpuls (englisch: ''Gaussian pulse''),  
+
*Rechteckimpuls  (englisch: ''Rectangular pulse''),
+
*Gaussian pulse,&nbsp;
*Dreieckimpuls  (englisch: ''Triangular pulse''),  
+
*rectangular pulse, &nbsp;
*Trapezimpuls  (englisch: ''Trapezoidal pulse''),  
+
*triangular pulse,&nbsp;
*Cosinus&ndash;Rolloff&ndash;Impuls  (englisch: ''Cosine-rolloff pulse'').
+
*trapezoidal pulse,&nbsp;
 
+
*raised cosine pulse,
 
+
*cosine square pulse.
Das aufzurufende Applet verwendet die englischen Begriffe im Gegensatz zu dieser deutschen Beschreibung. Die englische Beschreibung finden Sie unter [[Applets:Pulses_%26_Spectra|Pulses & Spectra]].
 
 
 
  
Weiter ist zu beachten:
 
* Die Funktionen $x(t)$ bzw. $X(f)$ werden für bis zu zwei Parametersätzen in jeweils einem Diagramm dargestellt.
 
* Die roten Kurven und Zahlenangaben gelten für den linken Parametersatz, die blauen für den rechten Parametersatz.
 
* Die Abszissen $t$ (Zeit) und $f$ (Frequenz) sowie die Ordinaten $x(t)$ (Signalwerte) bzw. $X(f)$  (Spektralwerte) sind jeweils normiert.
 
  
 +
Further it is to be noted:
 +
* The functions&nbsp; $x(t)$&nbsp; resp.&nbsp; $X(f)$&nbsp; are shown for up to two parameter sets in one diagram each.
 +
* The red curves and numbers apply to the left parameter set, the blue ones to the right parameter set.
 +
* The abscissas&nbsp; $t$&nbsp; (time) and&nbsp; $f$&nbsp; (frequency) as well as the ordinates&nbsp; $x(t)$&nbsp; (signal values) and&nbsp; $X(f)$&nbsp; (spectral values) are normalized.
  
{{GraueBox|TEXT= 
 
$\text{Beispiel:}$&nbsp; Stellt man einen Rechteckimpuls mit Amplitude $A_1 = 1$ und äquivalenter Impulsdauer $\Delta t_1 = 1$ ein, so ist $x_1(t)$ im Bereich $-0.5 < t < +0.5$ gleich $1$ und außerhalb dieses Bereichs gleich $0$. Die Spektralfunktion $X_1(f)$ verläuft si&ndash;förmig mit $X_1(f= 0) = 1$ und der ersten Nullstelle bei $f=1$.
 
 
Soll mit dieser Einstellung ein Rechteckimpuls mit $A = K = 3 \ \rm V$ und $\Delta t = T = 2 \ \rm ms$ nachgebildet werden, dann sind alle Signalwerte mit $K = 3 \ \rm V$ und alle Spektralwerte mit $K \cdot T = 0.006 \ \rm V/Hz$ zu multiplizieren. Der maximale Spektralwert ist dann $X(f= 0) = 0.006 \ \rm V/Hz$ und die erste Nullstelle liegt bei $f=1/T = 0.5 \ \rm kHz$.}}
 
  
  
==Theoretischer Hintergrund==
+
==Theoretical Background==
 
<br>
 
<br>
===Zusammenhang $x(t)\Leftrightarrow X(f)$===
+
===Relationship $x(t)\Leftrightarrow X(f)$===
*Der Zusammenhang zwischen Zeitfunktion $x(t)$ und dem Spektrum $X(f)$ ist durch das [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_erste_Fourierintegral|erste Fourierintegral]] gegeben:
+
*The relationship between the time function&nbsp; $x(t)$&nbsp; and the spectrum&nbsp; $X(f)$&nbsp; is given by the&nbsp; [[Signal_Representation/The_Fourier_Transform_and_its_Inverse#The_first_Fourier_integral|"first Fourier integral"]]&nbsp;:
 
:$$X(f)={\rm FT} [x(t)] = \int_{-\infty}^{+\infty}x(t)\cdot {\rm e}^{-{\rm j}2\pi f t}\hspace{0.15cm} {\rm d}t\hspace{1cm}
 
:$$X(f)={\rm FT} [x(t)] = \int_{-\infty}^{+\infty}x(t)\cdot {\rm e}^{-{\rm j}2\pi f t}\hspace{0.15cm} {\rm d}t\hspace{1cm}
\rm FT\hspace{-0.1cm}: \ Fouriertransformation.$$  
+
\rm FT\hspace{-0.1cm}: \ Fourier \ transform.$$  
  
*Um aus der Spektralfunktion $X(f)$ die Zeitfunktion $x(t)$ berechnen zu können, benötigt man das [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_zweite_Fourierintegral|zweite Fourierintegral]]:
+
*In order to calculate the time function&nbsp; $x(f)$&nbsp; from the spectral function&nbsp; $x(t)$&nbsp; one needs the&nbsp; [[Signal_Representation/The_Fourier_Transform_and_its_Inverse#The_second_Fourier_integral|"second Fourier integral"]]:
 
:$$x(t)={\rm IFT} [X(f)] = \int_{-\infty}^{+\infty}X(f)\cdot {\rm e}^{+{\rm j}2\pi f t}\hspace{0.15cm} {\rm d}f\hspace{1cm}
 
:$$x(t)={\rm IFT} [X(f)] = \int_{-\infty}^{+\infty}X(f)\cdot {\rm e}^{+{\rm j}2\pi f t}\hspace{0.15cm} {\rm d}f\hspace{1cm}
{\rm IFT}\hspace{-0.1cm}: \rm  Inverse \ Fouriertransformation.$$  
+
{\rm IFT}\hspace{-0.1cm}: \rm  Inverse \ Fourier \ transform.$$  
  
*In allen Beispielen verwenden wir reelle und gerade Funktionen. Somit gilt:
+
*In all examples we use real and even functions.&nbsp; Thus:
 
:$$x(t)=\int_{-\infty}^{+\infty}X(f)\cdot \cos(2\pi ft) \hspace{0.15cm} {\rm d}f \ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\ \ \ X(f)=\int_{-\infty}^{+\infty}x(t)\cdot \cos(2\pi ft) \hspace{0.15cm} {\rm d}t .$$
 
:$$x(t)=\int_{-\infty}^{+\infty}X(f)\cdot \cos(2\pi ft) \hspace{0.15cm} {\rm d}f \ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\ \ \ X(f)=\int_{-\infty}^{+\infty}x(t)\cdot \cos(2\pi ft) \hspace{0.15cm} {\rm d}t .$$
*$x(t)$ und $X(f)$ haben unterschiedliche Einheiten, z. B. $x(t)$ in $\rm V$, $X(f)$ in $\rm V/Hz$.
+
*$x(t)$&nbsp; and&nbsp; $X(f)$&nbsp; have different units, for example&nbsp; $x(t)$&nbsp; in&nbsp; $\rm V$,&nbsp; $X(f)$&nbsp; in&nbsp; $\rm V/Hz$.
*Der Zusammenhang zwischen diesem Modul &bdquo;Impulse & Spektren&rdquo;  und dem ähnlich aufgebauten Applet [[Frequenzgang & Impulsantwort]] basiert auf dem [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Vertauschungssatz|Vertauschungssatz]].
+
*The relationship between this module and the similarly constructed applet&nbsp; [[Applets:Frequenzgang_und_Impulsantwort|"Frequency response & Impulse response"]]&nbsp; is based on the&nbsp; [[Signal_Representation/The_Fourier_Transform_Theorems#Duality_Theorem|"Duality Theorem"]].
*Alle Zeiten sind auf eine Normierungszeit $T$ normiert und alle Frequenzen auf $1/T \Rightarrow$ die Spektralwerte $X(f)$ müssen noch mit der Normierungszeit $T$ multipliziert werden.
+
*All times are normalized to a time&nbsp; $T$&nbsp; and all frequencies are normalized to&nbsp; $1/T$ &nbsp; &rArr; &nbsp; the spectral values&nbsp; $X(f)$&nbsp; still have to be multiplied by the normalization time&nbsp; $T$&nbsp;.
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel:}$&nbsp; Stellt man einen Rechteckimpuls mit Amplitude $A_1 = 1$ und äquivalenter Impulsdauer $\Delta t_1 = 1$ ein, so ist $x_1(t)$ im Bereich $-0.5 < t < +0.5$ gleich $1$ und außerhalb dieses Bereichs gleich $0$. Die Spektralfunktion $X_1(f)$ verläuft si&ndash;förmig mit $X_1(f= 0) = 1$ und der ersten Nullstelle bei $f=1$.
+
$\text{Example:}$ &nbsp; If one sets a rectangular pulse with amplitude&nbsp; $A_1 = 1$&nbsp; and equivalent pulse duration&nbsp; $\Delta t_1 = 1$&nbsp; then&nbsp; $x_1(t)$&nbsp; in the range&nbsp; $-0.5 < t < +0. 5$&nbsp; equal to one and outside this range equal to zero.&nbsp; The spectral function&nbsp; $X_1(f)$&nbsp; proceeds&nbsp; $\rm si$&ndash;shaped with&nbsp; $X_1(f= 0) = 1$&nbsp; and the first zero at&nbsp; $f=1$.
 +
 
 +
*If a rectangular pulse with&nbsp; $A = K = 3 \ \rm V$&nbsp; and&nbsp; $\delta t = T = 2 \ \rm ms$&nbsp; is to be simulated with this setting, then all signal values with&nbsp; $K = 3 \ \rm V$&nbsp; and all spectral values with&nbsp; $K \cdot T = 0. 006 \ \rm V/Hz$&nbsp; to be multiplied by.
 +
*The maximum spectral value is then&nbsp; $X(f= 0) = 0.006 \ \rm V/Hz$&nbsp; and the first zero is at&nbsp; $f=1/T = 0.5 \ \rm kHz$.}}
 +
 
 +
 
 +
===Gaussian Pulse ===
  
Soll mit dieser Einstellung ein Rechteckimpuls mit $A = K = 3 \ \rm V$ und $\Delta t = T = 2 \ \rm ms$ nachgebildet werden, dann sind alle Signalwerte mit $K = 3 \ \rm V$ und alle Spektralwerte mit $K \cdot T = 0.006 \ \rm V/Hz$ zu multiplizieren. Der maximale Spektralwert ist dann $X(f= 0) = 0.006 \ \rm V/Hz$ und die ersteNullstelle liegt bei $f=1/T = 0.5 \ \rm kHz$.}}
+
*The time function of the Gaussian pulse with height&nbsp; $K$&nbsp; and (equivalent) duration&nbsp; $\Delta t$&nbsp; is:
 +
:$$x(t)=K\cdot {\rm e}^{-\pi\hspace{0.05cm}\cdot \hspace{0.05cm}(t/\Delta t)^2}.$$
 +
*The equivalent time duration&nbsp; $\Delta t$&nbsp; is obtained from the rectangle of equal area.
 +
*The value at&nbsp; $t = \Delta t/2$&nbsp; is smaller than the value at&nbsp; $t=0$ by the factor&nbsp; $0.456$&nbsp;.
 +
*For the spectral function we get according to the Fourier transform:
 +
:$$X(f)=K\cdot \Delta t \cdot {\rm e}^{-\pi(f\hspace{0.05cm}\cdot \hspace{0.05cm} \Delta t)^2} .$$
 +
*The smaller the equivalent time duration&nbsp; $\Delta t$&nbsp; is, the wider and lower the spectrum &nbsp; &rArr; &nbsp; [[Signal_Representation/The_Fourier_Transform_Theorems#Reciprocity_Theorem_of_time_duration_and_bandwidth|"Reciprocity law of bandwidth and pulse duration"]].
 +
*Both&nbsp; $x(t)$&nbsp; and&nbsp; $X(f)$&nbsp; are not exactly zero at any&nbsp; $f$&ndash; &nbsp;or&nbsp; $t$&ndash;value, respectively.
 +
*For practical applications, however, the Gaussian pulse can be assumed to be limited in time and frequency.&nbsp; For example,&nbsp; $x(t)$&nbsp; has already dropped to less than&nbsp; $0.1\% $&nbsp; of the maximum at&nbsp; $t=1.5 \delta t$&nbsp; .
  
  
===Gaußimpuls &nbsp; $\Rightarrow$ &nbsp; Gaussian Pulse ===
+
===Rectangular Pulse  ===
 +
*The time function of the rectangular pulse with height&nbsp; $K$&nbsp; and (equivalent) duration&nbsp; $\Delta t$&nbsp; is:
  
*Die Zeitfunktion des Gaußimpulses mit der Höhe $K$ und der (äquivalenten) Dauer $\Delta t$ lautet:
+
:$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K  \\ K /2 \\ \hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad \begin{array}{*{20}c}  {\rm{for}}  \\   {\rm{for}} \\  {\rm{for}}  \\ \end{array}\begin{array}{*{20}c}  {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| < T/2,} \\  {\left| \hspace{0.05cm}t\hspace{0.05cm} \right| = T/2,} \\  {\left|\hspace{0.05cm} t \hspace{0.05cm} \right| > T/2.}  \\ \end{array}$$
:$$x(t)=K\cdot {\rm e}^{-\pi\cdot(t/\Delta t)^2}.$$
 
*Die äquivalente Zeitdauer $\Delta t$ ergibt sich aus dem flächengleichen Rechteck.
 
*Der Wert bei $t = \Delta t/2$ ist um den Faktor $0.456$ kleiner als der Wert bei $t=0$.
 
*Für die Spektralfunktion erhält man gemäß der Fouriertransformation:
 
:$$X(f)=K\cdot \Delta t \cdot {\rm e}^{-\pi(f\cdot \Delta t)^2} .$$
 
*Je kleiner die äquivalente Zeitdauer $\Delta t$ ist, um so breiter und niedriger ist das Spektrum &nbsp; &rArr; &nbsp; [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Reziprozit.C3.A4tsgesetz_von_Zeitdauer_und_Bandbreite|Reziprozitätsgesetz von Bandbreite und Impulsdauer]].
 
*Sowohl $x(t)$ als auch $X(f)$ sind zu keinem $f$- bzw. $t$-Wert exakt gleich Null.
 
*Für praktische Anwendungen kann der Gaußimpuls jedoch in Zeit und Frequenz als begrenzt angenommen werden. Zum Beispiel ist $x(t)$ bereits bei $t=1.5 \Delta t$ auf weniger als $0.1\% $ des Maximums abgefallen.
 
  
===Rechteckimpuls  &nbsp; $\Rightarrow$ &nbsp; Rectangular  Pulse  ===
+
*The $\pm \Delta t/2$ value lies midway between the left- and right-hand limits.
*Die Zeitfunktion des Rechteckimpulses mit der Höhe $K$ und der (äquivalenten) Dauer $\Delta t$ lautet:
+
*For the spectral function one obtains according to the laws of the Fourier transform (1st Fourier integral):
 +
:$$X(f)=K\cdot \Delta t \cdot {\rm si}(\pi\cdot \Delta t \cdot f) \quad \text{with} \ {\rm si}(x)=\frac{\sin(x)}{x}.$$
 +
*The spectral value at&nbsp; $f=0$&nbsp; is equal to the rectangular area of the time function.
 +
*The spectral function has zeros at equidistant distances&nbsp; $1/\delta t$.
 +
*The integral over the spectral function&nbsp; $X(f)$&nbsp; is equal to the signal value at time&nbsp; $t=0$, i.e. the pulse height&nbsp; $K$.
  
:$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K  \\  K /2 \\ \hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad \begin{array}{*{20}c}  {\rm{f\ddot{u}r}}  \\  {\rm{f\ddot{u}r}}  \\  {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c}  {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| < T/2,}  \\  {\left| \hspace{0.05cm}t\hspace{0.05cm} \right| = T/2,}  \\  {\left|\hspace{0.05cm} t \hspace{0.05cm} \right| > T/2.}  \\ \end{array}$$
 
  
*Der $\pm \Delta t/2$&ndash;Wert liegt mittig zwischen links- und rechtsseitigem Grenzwert.
+
===Triangular  Pulse===
*Für die Spektralfunktion erhält man entsprechend den Gesetzmäßigkeiten der Fouriertransformation (1. Fourierintegral):
+
*The time function of the triangular pulse with height&nbsp; $K$&nbsp; and (equivalent) duration&nbsp; $\Delta t$&nbsp; is:
:$$X(f)=K\cdot \Delta t \cdot {\rm si}(\pi\cdot \Delta t \cdot f) \quad \text{mit} \ {\rm si}(x)=\frac{\sin(x)}{x}.$$
 
*Der Spektralwert bei $f=0$ ist gleich der Rechteckfläche der Zeitfunktion.
 
*Die Spektralfunktion besitzt Nullstellen in äquidistanten Abständen $1/\Delta t$.
 
*Das Integral über der Spektralfunktion $X(f)$ ist gleich dem Signalwert zum Zeitpunkt $t=0$, also der Impulsamplitude $K$.
 
  
===Dreieckimpuls $\Rightarrow$ Dreieckimpuls  Triangular  Pulse===
+
:$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K\cdot (1-|t|/{\Delta t}) \\ \hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad \begin{array}{*{20}c}  {\rm{for}}  \\    {\rm{for}}  \\ \end{array}\begin{array}{*{20}c}  {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| < \Delta t,}  \\  {\left| \hspace{0.05cm}t\hspace{0.05cm} \right| \ge \Delta t.}  \\ \end{array}$$
*Die Zeitfunktion des Dreieckimpulses mit der Höhe $K$ und der (äquivalenten) Dauer $\Delta t$ lautet:
 
  
:$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K\cdot \Big(1-\frac{|t|}{\Delta t}\Big) \\ \hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad \begin{array}{*{20}c}  {\rm{f\ddot{u}r}}  \\    {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c}  {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| < \Delta t,} \\  {\left| \hspace{0.05cm}t\hspace{0.05cm} \right| \ge \Delta t.}  \\ \end{array}$$
+
*The absolute time duration is&nbsp; $2 \cdot \Delta t$;&nbsp; this is twice as large as that of the rectangle.
 +
*For the spectral function, we obtain according to the Fourier transform:
 +
:$$X(f)=K\cdot \Delta f \cdot {\rm si}^2(\pi\cdot \Delta t \cdot f) \quad \text{with} \quad {\rm si}(x)=\frac{\sin(x)}{x}.$$
 +
*The above time function is equal to the convolution of two rectangular pulses, each with width&nbsp; $\delta t$.  
 +
*From this follows:&nbsp; $X(f)$&nbsp; contains instead of the&nbsp; ${\rm si}$-function the&nbsp; ${\rm si}^2$-function.
 +
*$X(f)$&nbsp; thus also has zeros at equidistant intervals&nbsp; $1/\rm f$&nbsp;.
 +
*The asymptotic decay of&nbsp; $X(f)$&nbsp; occurs here with&nbsp; $1/f^2$, while for comparison the rectangular pulse decays with&nbsp; $1/f$&nbsp;.
  
*Die absolute Zeitdauer ist $2 \cdot \Delta t$; diese ist doppelt so groß als die des Rechtecks.
 
*Für die Spektralfunktion erhält man gemäß der Fouriertransformation:
 
:$$X(f)=K\cdot \Delta f \cdot {\rm si}^2(\pi\cdot \Delta t \cdot f) \quad \text{mit} \ {\rm si}(x)=\frac{\sin(x)}{x}.$$
 
*Obige Zeitfunktion ist gleich der Faltung zweier Rechteckimpulse, jeweils mit Breite $\Delta t$
 
*Daraus folgt: $X(f)$ beinhaltet anstelle der ${\rm si}$-Funktion die ${\rm si}^2$-Funktion.
 
*$X(f)$ weist somit ebenfalls Nullstellen im äquidistanten Abständen $1/\Delta f$ auf.
 
*Der asymptotische Abfall von $X(f)$ erfolgt hier mit $1/f^2$, während zum Vergleich der Rechteckimpuls mit $1/f$ abfällt.
 
  
  
===Trapezimpuls  &nbsp; $\Rightarrow$ &nbsp;  Trapezoidal  Pulse  ===
+
===Trapezoidal  Pulse  ===
Die Zeitfunktion des Trapezimpulses mit der Höhe $K$ und den Zeitparametern $t_1$ und $t_2$ lautet:
+
The time function of the trapezoidal pulse with height&nbsp; $K$&nbsp; and time parameters&nbsp; $t_1$&nbsp; and&nbsp; $t_2$&nbsp; is:
:$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K  \\  K\cdot \frac{t_2-|t|}{t_2-t_1} \\ \hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad \begin{array}{*{20}c}  {\rm{f\ddot{u}r}}  \\  {\rm{f\ddot{u}r}}  \\  {\rm{f\ddot{u}r}\\ \end{array}\begin{array}{*{20}c}  {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| \le t_1,}  \\  {t_1\le \left| \hspace{0.05cm}t\hspace{0.05cm} \right| \le t_2,}  \\  {\left|\hspace{0.05cm} t \hspace{0.05cm} \right| \ge t_2.}  \\ \end{array}$$
+
:$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K  \\  K\cdot \frac{t_2-|t|}{t_2-t_1} \\ \hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad \begin{array}{*{20}c}  {\rm{for}}\quad \\  {\rm{for}}\quad \\  {\rm{for}} \quad \\ \end{array}\begin{array}{*{20}c}  {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| \le t_1,}  \\  {t_1\le \left| \hspace{0.05cm}t\hspace{0.05cm} \right| \le t_2,}  \\  {\left|\hspace{0.05cm} t \hspace{0.05cm} \right| \ge t_2.}  \\ \end{array}$$
  
*Für die äquivalente Impulsdauer (flächengleiches Rechteck) gilt: $\Delta t = t_1+t_2$.
+
*For the equivalent pulse duration (rectangle of equal area) holds: &nbsp; $\Delta t = t_1+t_2$.
*Der Rolloff-Faktor (im Zeitbereich) kennzeichnet die Flankensteilheit:
+
*The rolloff factor (in the time domain) characterizes the slope:
 
:$$r=\frac{t_2-t_1}{t_2+t_1}.$$
 
:$$r=\frac{t_2-t_1}{t_2+t_1}.$$
*Der Sonderfall $r=0$ entspricht dem Rechteckimpuls der Sonderfall $r=1$ dem Dreieckimpuls.
+
*The special case&nbsp; $r=0$&nbsp; corresponds to the rectangular pulse and the special case&nbsp; $r=1$&nbsp; to the triangular pulse.
*Für die Spektralfunktion erhält man gemäß der Fouriertransformation:
+
*For the spectral function one obtains according to the Fourier transform:
:$$X(f)=K\cdot \Delta t \cdot {\rm si}(\pi\cdot \Delta t \cdot f)\cdot {\rm si}(\pi \cdot r \cdot \Delta t \cdot f) \quad \text{mit} \ {\rm si}(x)=\frac{\sin(x)}{x}.$$
+
:$$X(f)=K\cdot \Delta t \cdot {\rm si}(\pi\cdot \Delta t \cdot f)\cdot {\rm si}(\pi \cdot r \cdot \Delta t \cdot f) \quad \text{with} \quad {\rm si}(x)=\frac{\sin(x)}{x}.$$
*Der asymptotische Abfall von $X(f)$ liegt zwischen $1/f$ (für Rechteck, $r=0$) und $1/f^2$ (für Dreieck, $r=1$).
+
*The asymptotic decay of&nbsp; $X(f)$&nbsp; lies between&nbsp; $1/f$&nbsp; $($for rectangle,&nbsp; $r=0)$&nbsp; and&nbsp; $1/f^2$&nbsp; $($for triangle,&nbsp; $r=1)$.
 +
 
  
===Cosinus-Rolloff-Impuls  &nbsp; $\Rightarrow$ &nbsp;  Cosine-rolloff   Pulse  ===
+
===Raised cosine   Pulse  ===
Die Zeitfunktion des Cosinus-Rolloff-Impulses mit der Höhe $K$ und den Zeitparametern $t_1$ und $t_2$ lautet:
+
The time function of the raised cosine pulse with height&nbsp; $K$&nbsp; and time parameters&nbsp; $t_1$&nbsp; and&nbsp; $t_2$&nbsp; is:
  
:$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K  \\  K\cdot \cos^2\Big(\frac{|t|-t_1}{t_2-t_1}\cdot \frac{\pi}{2}\Big) \\ \hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad \begin{array}{*{20}c}  {\rm{f\ddot{u}r}}  \\  {\rm{f\ddot{u}r}}  \\  {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c}  {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| \le t_1,}  \\  {t_1\le \left| \hspace{0.05cm}t\hspace{0.05cm} \right| \le t_2,}  \\  {\left|\hspace{0.05cm} t \hspace{0.05cm} \right| \ge t_2.}  \\ \end{array}$$
+
:$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K  \\  K\cdot \cos^2\Big(\frac{|t|-t_1}{t_2-t_1}\cdot {\pi}/{2}\Big) \\ \hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad \begin{array}{*{20}c}  {\rm{for}}\quad \\  {\rm{for}}\quad \\  {\rm{for}}\quad \\ \end{array}\begin{array}{*{20}c}  {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| \le t_1,}  \\  {t_1\le \left| \hspace{0.05cm}t\hspace{0.05cm} \right| \le t_2,}  \\  {\left|\hspace{0.05cm} t \hspace{0.05cm} \right| \ge t_2.}  \\ \end{array}$$
  
*Für die äquivalente  Impulsdauer (flächengleiches Rechteck) gilt: $\Delta t = t_1+t_2$.
+
*For the equivalent pulse duration (rectangle of equal area) holds: &nbsp; $\Delta t = t_1+t_2$.
*Der Rolloff-Faktor (im Zeitbereich) kennzeichnet die Flankensteilheit:
+
*The rolloff factor (in the time domain) characterizes the slope:
 
:$$r=\frac{t_2-t_1}{t_2+t_1}.$$
 
:$$r=\frac{t_2-t_1}{t_2+t_1}.$$
*Der Sonderfall $r=0$ entspricht dem Rechteckimpuls der Sonderfall $r=1$ dem Cosinus-Quadrat-Impuls .
+
*The special case&nbsp; $r=0$&nbsp; corresponds to the square pulse and the special case&nbsp; $r=1$&nbsp; to the cosine square pulse.
*Für die Spektralfunktion erhält man gemäß der Fouriertransformation:
+
*For the spectral function one obtains according to the Fourier transform:
:$$X(f)=K\cdot \Delta t \cdot \frac{\cos(\pi \cdot r\cdot \Delta t \cdot f)}{1-(2\cdot r\cdot \Delta t \cdot f)^2} \cdot si(\pi \cdot \Delta t \cdot f).$$
+
:$$X(f)=K\cdot \Delta t \cdot \frac{\cos(\pi \cdot r\cdot \Delta t \cdot f)}{1-(2\cdot r\cdot \Delta t \cdot f)^2} \cdot {\rm si}(\pi \cdot \Delta t \cdot f).$$
*Je größer der Rolloff-Faktor $r$ ist, desto schneller nimmt $X(f)$ asymptotisch mit $f$ ab.
+
*The larger the rolloff factor&nbsp; $r$&nbsp; is, the faster&nbsp; $X(f)$&nbsp; decreases asymptotically with&nbsp; $f$&nbsp;.
  
===Cosinus-Quadrat-Impuls ===
 
*Dies ist ein Sonderfall des Cosinus-Rolloff-Impulses und ergibt sich für $r=1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}t_1=0, t_2= \Delta t$:
 
  
:$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K\cdot \cos^2\Big(\frac{|t|\cdot \pi}{2\cdot \Delta t}\Big)  \\ \hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad \begin{array}{*{20}c}  {\rm{f\ddot{u}r}}  \\    {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c}  {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| < \Delta t,\\  {\left| \hspace{0.05cm}t\hspace{0.05cm} \right| \ge \Delta t.}  \\ \end{array}$$
+
===Cosine square Pulse ===
 +
*This is a special case of the raised cosine pulse and results for&nbsp; $r=1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}t_1=0, \ t_2= \Delta t$:
  
*Für die Spektralfunktion erhält man gemäß der Fouriertransformation:
+
:$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K\cdot \cos^2\Big(\frac{|t|\hspace{0.05cm}\cdot \hspace{0.05cm} \pi}{2\hspace{0.05cm}\cdot \hspace{0.05cm} \Delta t}\Big)  \\ \hspace{0.25cm} 0 \\  \end{array} \right.\quad \quad \begin{array}{*{20}c}  {\rm{for}}  \\    {\rm{for}}  \\ \end{array}\begin{array}{*{20}c}  {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| < \Delta t,}  \\  {\left| \hspace{0.05cm}t\hspace{0.05cm} \right| \ge \Delta t.}  \\ \end{array}$$
 +
 
 +
*For the spectral function, we obtain according to the Fourier transform:
 
:$$X(f)=K\cdot \Delta f \cdot \frac{\pi}{4}\cdot \big  [{\rm si}(\pi(\Delta t\cdot f +0.5))+{\rm si}(\pi(\Delta t\cdot f -0.5))\big ]\cdot {\rm si}(\pi \cdot \Delta t \cdot f).$$
 
:$$X(f)=K\cdot \Delta f \cdot \frac{\pi}{4}\cdot \big  [{\rm si}(\pi(\Delta t\cdot f +0.5))+{\rm si}(\pi(\Delta t\cdot f -0.5))\big ]\cdot {\rm si}(\pi \cdot \Delta t \cdot f).$$
*Wegen der letzten ${\rm si}$-Funktion ist $X(f)=0$ für alle Vielfachen von $F=1/\Delta t$. Die äquidistanten Nulldurchgänge des Cos-Rolloff-Impulses bleiben erhalten.
+
*Because of the last&nbsp; ${\rm si}$-function is&nbsp; $X(f)=0$&nbsp; for all multiples of&nbsp; $F=1/\delta t$.&nbsp; The equidistant zero crossings of the raised cosine pulse are preserved.
*Aufgrund des Klammerausdrucks weist $X(f)$ nun weitere Nulldurchgänge bei $f=\pm1.5 F$, $\pm2.5 F$, $\pm3.5 F$, ... auf.
+
*Because of the bracket expression,&nbsp; $X(f)$&nbsp; now exhibits further zero crossings at&nbsp; $f=\pm1.5 F$,&nbsp; $\pm2.5 F$,&nbsp; $\pm3.5 F$, ... .
*Für die Frequenz $f=\pm F/2$ erhält man die Spektralwerte $K\cdot \Delta t/2$.
+
*For frequency&nbsp; $f=\pm F/2$&nbsp; the spectral values&nbsp; $K\cdot \Delta t/2$ are obtained.
*Der asymptotische Abfall von $X(f)$ verläuft in diesem Sonderfall mit $1/f^3$.
+
*The asymptotic decay of&nbsp; $X(f)$&nbsp; runs in this special case with&nbsp; $1/f^3$.
  
==Vorschlag für die Versuchsdurchführung==
+
==Exercises==
 
<br>
 
<br>
&bdquo;Rot&rdquo; bezieht sich stets auf den ersten Parametersatz &nbsp; &rArr; &nbsp; $x_1(t)  \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\ X_1(f)$ und &bdquo;Blau&rdquo; den zweiten &nbsp; &rArr; &nbsp; $x_2(t)  \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\ X_2(f)$.
+
 
 +
* First select the number&nbsp; $(1,\text{...}, 7)$&nbsp; of the exercise.&nbsp; The number&nbsp; $0$&nbsp; corresponds to a "Reset":&nbsp; Same setting as at program start.
 +
*A task description is displayed.&nbsp; The parameter values ​​are adjusted.&nbsp; Solution after pressing "Show solution". <br>
 +
* "Red" refers to the first parameter set &rArr; $x_1(t)  \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\ X_1(f)$,&nbsp; "Blue" refers to the second parameter set &rArr; $x_2(t)  \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\ X_2(f)$.
 +
*Values with magnitude less than&nbsp; $0.0005$&nbsp; are output in the program as "zero".
 +
 
  
 
  {{BlaueBox|TEXT=   
 
  {{BlaueBox|TEXT=   
'''(1)''' &nbsp; Vergleichen Sie den '''roten Gaußimpuls''' $(A_1 = 1, \Delta t_1 = 1)$  mit dem '''blauen Rechteckimpuls''' $(A_2 = 1, \Delta t_2 = 1)$  &nbsp; &rArr; &nbsp; Voreinstellung.
+
'''(1)''' &nbsp; Compare the&nbsp; <b>red Gaussian pulse</b> &nbsp;$(A_1 = 1, \Delta t_1 = 1)$&nbsp; with the&nbsp; <b>blue rectangular pulse</b> &nbsp;$(A_2 = 1, \Delta t_2 = 1)$  &rArr; default setting.
<br>Welche Unterschiede erkennt man im Zeit- und im Frequenzbereich?}}
+
<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; What are the differences in the time and frequency domain?}}
  
 
+
* The Gaussian pulse theoretically reaches infinity in the time as well as in the frequency domain. <br>
*Der Gaußimpuls reicht sowohl im Zeit&ndash; als auch im Frequenzbereich theoretisch bis ins Unendliche. Praktisch sind aber $x_1(t)$ für $|t| > 1.5$ und $X_1(t)$ für $|f| > 1.5$ nahezu Null.
+
* Practically&nbsp; $x_1(t)$&nbsp; for&nbsp; $|t| > 1.5$&nbsp; and&nbsp; $X_1(f)$&nbsp; for&nbsp; $|f| > 1.5$&nbsp; are almost zero.<br>
*Der Rechteckimpuls ist zeitlich steng begrenzt: $x_2(|t| \ge 0.5) \equiv 0$, während  $X_2(f)$ in einem sehr viel größeren Bereich als $X_1(f)$ betragsmäßige Anteile besitzt.  
+
* The rectangle is strictly limited in time:&nbsp;  $x_2(|t| > 0.5) \equiv 0$.&nbsp; $X_2(f)$&nbsp; has shares in a much larger range than&nbsp; $X_1(f)$. <br>
*Es gilt $X_1(f = 0) = X_2(f = 0)$, weil das Integral über den Gaußimpuls $x_1(t)$ wie das  Integral über den Rechteckimpuls $x_2(t)$.
+
* It holds&nbsp; $X_1(f = 0) = X_2(f = 0)$&nbsp; since the integral over the Gaussian pulse&nbsp; $x_1(t)$&nbsp; is equal to the integral over the rectangular pulse&nbsp; $x_2(t)$.
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(2)''' &nbsp; Vergleichen Sie den '''roten Gaußimpuls''' $(A_1 = 1, \Delta t_1 = 1)$ mit dem '''blauen Rechteckimpuls''' $(A_2 = 1,\Delta t_2)$ und variieren Sie $\Delta t_2$ zwischen $0.5$ und $2$. Interpretieren Sie die dargestellten Graphen.}}
+
'''(2)''' &nbsp; Compare the&nbsp; <b>red Gaussian pulse</b>&nbsp; $(A_1 = 1,&nbsp; \Delta t_1 = 1)$ with the&nbsp; <b>blue rectangular pulse</b>&nbsp; $(A_2 = 1,&nbsp; \Delta t_2)$.<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Vary the equivalent pulse duration&nbsp; $\Delta t_2$&nbsp; between&nbsp; $0.5$&nbsp; and &nbsp;$2$.&nbsp; Interpret the displayed graphs.}}
 
 
  
*Man erkennt das [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Reziprozit.C3.A4tsgesetz_von_Zeitdauer_und_Bandbreite|Reziprozitätsgesetz von Bandbreite und Impulsdauer]]. Je größer die äquivalente Impulsdauer $\Delta t_2$ ist, um so höher und schmäler ist die Spektralfunktion $X_2(f)$.
+
* One can recognize the reciprocity law of bandwidth and pulse duration.&nbsp; The greater&nbsp; $\Delta t_2$, the higher and narrower the spectral function&nbsp; $X_2(f)$.<br>
*Da bei jeder Einstellung von $\Delta t_2$ die Zeitsignalwerte bei $t=0$ von $x_1(t)$ und $x_2(t)$ sind auch die Integrale über $X_1(f)$ und $X_2(f)$ identisch.
+
* For each setting of&nbsp; $\Delta t_2$,&nbsp; $x_1(t=0)$&nbsp; and&nbsp; $x_2(t=0)$&nbsp; are equal &nbsp; &rArr;  &nbsp; Also, the integrals over&nbsp; $X_1(f)$&nbsp; and&nbsp; $X_2(f)$&nbsp; are identical.
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(3)''' &nbsp; Vergleichen Sie den '''roten Rechteckimpuls''' $(A_1 = 1, \Delta t_1 = 1)$ mit dem '''blauen Rechteckimpuls''' $(A_2 = 1,\Delta t_2 = 0.5)$ und variieren Sie anschließend $\Delta t_2$ zwischen $0.05$ und $2$. Interpretieren Sie die dargestellten Graphen und extrapolieren Sie das Ergebnis.}}
+
'''(3)''' &nbsp; Compare the&nbsp; <b>red Gaussian pulse</b>&nbsp; $(A_1 = 1,&nbsp; \Delta t_1 = 1)$ with the&nbsp; <b>blue rectangular pulse</b>&nbsp; $(A_2 = 1,&nbsp; \Delta t_2 = 0.5)$.<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Vary&nbsp; $\Delta t_2$&nbsp; between&nbsp; $0.05$&nbsp; and&nbsp; $2$.&nbsp; Interpret the displayed graphs and extrapolate the result.}}
 
 
  
*Mit $\Delta t_2 = 0.5$ ist $X_2(f = 0) = X_1(f = 0) = 1$. Das blaue Spektrum ist aber nun doppelt so breit, das heißt, dass sie erste Nullstelle von $X_2(f)$ erst bei $f =2$ auftritt, während $X_1(f)$ die $x$&ndash;Achse schon bei $f =1$ schneidet.
+
* The blue spectrum is now twice as wide as the red one, but only half as high.&nbsp; First zero of&nbsp; $X_1(f)$&nbsp; at&nbsp; $f = 1$, of&nbsp; $X_2(f)$&nbsp; at&nbsp; $f = 2$.<br>
*Verkleinert man $\Delta t_2$ immer mehr, so wird $X_2(f)$ immer niedriger und breiter. Bei $\Delta t_2 = 0.05$ ist $X_2(f = 0)= 0.1$ und es ergibt sich ein sehr flacher Verlauf. Beispielsweise ist $X_2(f = \pm 3)= 0.096$.
+
* Reduction of&nbsp; $\Delta t_2$:&nbsp; $X_2(f)$&nbsp; lower and wider.&nbsp; Very flat course at&nbsp; $\Delta t_2 = 0.05$:&nbsp; $X_2(f = 0)= 0.05$,&nbsp; $X_2(f = \pm 3)= 0.048$. <br>
*Würde man $\Delta t_2 = \varepsilon$ wählen (was bei dem Programm nicht möglich ist), so wäre im Grenzübergang $\varepsilon \to 0$ das Spektrum $X_2(f)=2 \cdot \varepsilon$ (für $A=2$) bzw. $X_2(f)=\varepsilon$ (für $A=1$) nahezu konstant, aber sehr klein.
+
* If one choose&nbsp; $\Delta t_2 = \varepsilon \to 0$&nbsp; (not possible in the program),&nbsp; the result would be the almost constant, very small spectrum&nbsp; $X_2(f)=A \cdot \varepsilon \to 0$.<br>
*Erhöht man dafür die Amplitude auf $A=1/\varepsilon$, so ergibt sich die konstante Spektralfunktion $X_2(f) = 1$ der [[Signaldarstellung/Gleichsignal_-_Grenzfall_eines_periodischen_Signals#Diracfunktion_im_Frequenzbereich|Diracfunktion]] $\delta(t)$ (im Zeitbereich).
+
* Increasing the amplitude to&nbsp; $A=1/\varepsilon$&nbsp; results in the constant spectral function&nbsp; $X_2(f) = 1$&nbsp; of the Dirac function&nbsp; $\delta(t)$.&nbsp; That means:<br>
*Das bedeutet, dass $\delta(t)$ durch ein Rechteck der Breite $\Delta t = \varepsilon \to 0$ und der Höhe $A = 1/\varepsilon \to \infty$ approximiert werden kann. Die Impulsfläche ist dann Eins, was dem Gewicht der Diracfunktion entspricht: &nbsp; $x(t) = 1 \cdot \delta (t)$.
+
* $\delta(t)$&nbsp; is approximated by a rectangle&nbsp; $($width&nbsp; $\Delta t = \varepsilon \to 0$,&nbsp; height&nbsp; $A = 1/\varepsilon \to \infty)$.&nbsp; The weight of the Dirac function is one:&nbsp; $x(t) = 1 \cdot \delta (t)$.
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(4)''' &nbsp; Vergleichen Sie den '''roten Rechteckimpuls''' $(A_1 = 1, \Delta t_1 = 1)$ mit dem '''blauen Dreieckimpuls''' $(A_2 = 1,\Delta t_2 = 1)$ und interpretieren Sie deren Spektalfunktionen.}}
+
'''(4)''' &nbsp; Compare the&nbsp; <b> rectangular pulse</b>&nbsp; $(A_1 = 1, &nbsp; \Delta t_1 = 1)$&nbsp; with the&nbsp; <b>triangular pulse</b>&nbsp; $(A_2 = 1, &nbsp; \Delta t_2 = 1)$.&nbsp; Interpret the spectral functions.}}
  
 
+
* The (normalized) spectrum of the rectangle&nbsp; $x_1(t)$&nbsp; with the (normalized) parameters&nbsp; $A_1 = 1, \ \ \Delta t_1 = 1$&nbsp; is:&nbsp; $X_1(f)= {\rm si}(\pi\cdot f)= {\rm sinc}(f)$.<br>
*Das (normierte) Spektrum des Rechteckimpulses $x_1(t)$ mit den (normierte) Parametern  $A_1 = 1$ und  $\Delta t_1 = 1$ lautet $X_1(f)= {\rm si}(\pi\cdot f)$.
+
* The convolution of the rectangle&nbsp; $x_1(t)$&nbsp; with itself gives the triangle&nbsp; $x_2(t) = x_1(t) \star x_1(t)$.&nbsp; By the convolution theorem: &nbsp; $X_2(f) = X_1(f)^2 $. <br>
* Faltet man den Rechteckimpuls $x_1(t)$ mit sich selbst, so kommt man zum  Dreieckimpuls $x_2(t) = x_1(t) \star x_1(t)$. Nach dem [[Signaldarstellung/Faltungssatz_und_Faltungsoperation#Faltung_im_Zeitbereich|Faltungssatz]] gilt dann $X_2(f) = X_1(f) \cdot X_1(f) = X_1(f)^2 $.
+
* By squaring the&nbsp; ${\rm sinc}(f)$&ndash;shaped spectral function&nbsp; $X_1(f)$&nbsp; the zeros of&nbsp; $X_2(f)$&nbsp; remain unchanged.&nbsp; But now it holds that: $X_2(f) \ge 0$.
*Durch das Quadrieren der $\rm si$&ndash;förmigen Spektralfunktion $X_1(f)$ bleiben die Nullstellen in $X_2(f)$ erhalten. Es gilt aber nun $X_2(f) \ge 0$.
 
  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(5)''' &nbsp; Vergleichen Sie den '''roten Trapezimpuls''' $(A_1 = 1, \Delta t_1 = 1, r_1 = 0.5)$ mit dem '''blauen Dreieckimpuls''' $(A_2 = 1,\Delta t_2 = 1)$ und  und variieren Sie $r_1$ zwischen $0$ und $1$. Interpretieren Sie die Spektalfunktion $X_1(f)$.}}
+
'''(5)''' &nbsp; Compare the&nbsp; <b>trapezoidal pulse</b>&nbsp; $(A_1 = 1, \Delta t_1 = 1, r_1 = 0.5)$&nbsp; with the&nbsp;
 +
<b>triangular pulse</b> $(A_2 = 1, &nbsp; \Delta t_2 = 1)$.<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Vary&nbsp; $r_1$&nbsp; between&nbsp; $0$&nbsp; and&nbsp; $1$.&nbsp; Interpret the spectral function&nbsp; $X_1(f)$.}}
  
 +
* The trapezoidal pulse with roll&ndash;off factor&nbsp; $r_1= 0$&nbsp; is identical to the rectangular pulse.&nbsp; The "normalized spectrum" is&nbsp; $X_1(f)= {\rm sinc}(f)$.<br>
 +
* The trapezoidal pulse with roll&ndash;off factor&nbsp; $r_1= 1$&nbsp; is identical to the triangular pulse.&nbsp; The "normalized spectrum" is&nbsp; $X_1(f)= {\rm sinc}^2(f)$. <br>
 +
* In both cases&nbsp; $X_1(f)$&nbsp; has equidistant zeros at&nbsp; $\pm 1$,&nbsp; $\pm 2$, ...&nbsp; (none else); &nbsp; $0 < r_1 < 1$:&nbsp; depending on&nbsp; $r_1$&nbsp; further zeros.
  
*Der  Trapezimpuls mit dem Rolloff-Faktor $r= 0$ ist identsisch mit dem Rechteckimpuls und das &bdquo;normierte Spektrum&rdquo; lautet: $X_1(f)= {\rm si}(\pi\cdot f)$.
 
*Der  Trapezimpuls mit dem Rolloff-Faktor $r= 1$ ist identsisch mit dem Dreieckimpuls und das &bdquo;normierte Spektrum&rdquo; lautet: $X_1(f)= {\rm si}^2(\pi\cdot f)$.
 
*In beiden Fällen besitzt $X_1(f)$ äquidistante Nulldurchgänge bei $\pm 1$, $\pm 2$, ... Sonst gibt es keine  Nulldurchgänge.
 
Mit $0 < r_1 < 1$ gibt es dagegen zusätzliche Nulldurchgänge, deren Lagen von  $r_1$ abhängen.
 
  
 +
{{BlaueBox|TEXT= 
 +
'''(6)''' &nbsp; Compare this&nbsp; <b>trapezoidal pulse</b>&nbsp; with the <b>cosine roll-off pulse</b>&nbsp;
 +
$(A_2 = 1,\ \Delta t_2 = 1.0,\ r_2 = 0.5)$.<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Vary&nbsp; $r_2$&nbsp; between&nbsp; $0$&nbsp; and&nbsp; $1$.&nbsp; Interpret the spectral function&nbsp; $X_2(f)$&nbsp; for&nbsp; $r_2 = 0.7$.}}
  
{{BlaueBox|TEXT=
+
* With the same&nbsp; $r= 0.5$&nbsp; the cosine roll-off pulse&nbsp; $X_2(f)$ is for&nbsp; $f > 1$&nbsp; greater in magnitude than the trapezoidal pulse.<br>
'''(6)''' &nbsp; Vergleichen Sie den '''roten Trapezimpuls''' $(A_1 = 1, \Delta t_1 = 1, r_1 = 0.5)$ mit dem '''blauen Cosinus-Rolloff-Impuls''' $(A_2 = 1,\Delta t_2 = 1.0, r_1 = 0.5)$ und  und variieren Sie $r_2$ zwischen $0$ und $1$. Interpretieren Sie die Spektalfunktion $X_2(f)$ für $r_2 = 0.7$.}}
+
* With the same roll-off factor&nbsp; $(r_1 = r_2= 0.5)$&nbsp; the drop of&nbsp; $X_2(f)$&nbsp; around the frequency&nbsp; $f = 0.5$&nbsp; is steeper than the drop of&nbsp; $X_1(f)$. <br>
 +
* With&nbsp; $r_1 = 0.5$&nbsp; and&nbsp; $r_2 = 0.7$&nbsp; $x_1(t) \approx x_2(t)$&nbsp; is valid and therefore also&nbsp; $X_1(f) \approx X_2(f)$.&nbsp; Comparable edge steepness.
  
  
*Der Vergleich von Trapezimpuls $x_1(t)$ und Cosinus-Rolloff-Impuls $x_2(t)$ bei gleichem Rolloff-Faktor $r= 0.5$ zeigt, dass $X_2(f)$ für $f > 1$ größere betragsmäßige Anteile besitzt als ist $X_1(f)$.
+
{{BlaueBox|TEXT=  
*Bei gleichem Rolloff-Faktor $r_1 = r_2= 0.5$ verläuft der Flankenabfall des Cosinus-Rolloff-Impulses $x_2(t)$ um die Frequenz $f = 0.5$ steiler als der Flankenabfall des Trapezimpulses $x_2(t)$. Mit $r_1 = 0.5$ und $r_2 = 0.7$ gilt  $x_1(t) \approx x_2(t)$ und damit auch $X_1(f) \approx X_2(f)$.
+
'''(7)''' &nbsp; Compare the&nbsp; <b>red trapezoidal pulse</b>&nbsp; $(A_1 = 1, \Delta t_1 = 1, \ r_1 = 1)$&nbsp; with the&nbsp; <b>blue cosine roll-off pulse</b>&nbsp; $(A_2 = 1,\ \Delta t_2 = 1.0, \ r_2 = 1)$.<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Interpret the time function&nbsp; $x_2(t)$&nbsp; and the spectral function&nbsp; $X_2(f)$&nbsp; system theoretically.}}
  
 +
* $x_2(t) = \cos^2(|t|\cdot \pi/2) \ \ \ \text{for} \ |t| \le 1$&nbsp; is the&nbsp; cosine square pulse.&nbsp; Zeros at&nbsp; $f = \pm 1$,&nbsp; $\pm 2$, ...  <br>
 +
* For the frequency&nbsp; $f=\pm 0.5$&nbsp; one obtains the spectral values&nbsp; $X_2(f)=0.5$.&nbsp; The asymptotic decline is shown here with&nbsp; $1/f^3$.
  
{{BlaueBox|TEXT= 
 
'''(7)''' &nbsp; Vergleichen Sie den '''roten Trapezimpuls''' $(A_1 = 1, \Delta t_1 = 1, r_1 = 1)$  mit dem '''blauen Cosinus-Rolloff-Impuls''' $(A_2 = 1,\Delta t_2 = 1.0, r_1 = 1)$. Interpretieren Sie die Funktionen  $x_1(t)$ und $X_1(f)$.}}
 
  
  
*Es handelt sich bei $x_1(t) = \cos^2(|t|\cdot \pi/2) \ \ \text{für} \ |t|  \le 1$ um den [[Applets:Impulse_und_Spektren#Cosinus-Quadrat-Impuls|Cosinus-Quadrat-Impuls]].
+
==Applet Manual==
*Wegen $\Delta t = 1$ besitzt $X_1(f)$ Nulldurchgänge bei $\pm 1$, $\pm 2$, ...
 
*Weitere Nulldurchgänge gibt es bei $f=\pm 1.5$, $\pm 2.5$, $\pm 3.5$, ... , nicht jedoch bei $\pm 0.5$.
 
*Für die Frequenz $f=\pm 0.5$ erhält man die Spektralwerte $0.5$.
 
*Der asymptotische Abfall von $X_1(f)$ verläuft in diesem Sonderfall mit $1/f^3$.
 
  
 +
[[File:EN_Impulse_Man_neu.png|right|frame|Screenshot]]
  
==Zur Handhabung des Programms==
 
<br>
 
[[File:Spektrum_version1.png |left]]
 
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Bereich der graphischen Darstellung für $x(t)$
 
  
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; Bereich der graphischen Darstellung für $X(f)$
+
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Theme (changeable graphical user interface design)
 +
:* Dark: &nbsp; dark background&nbsp; (recommended by the authors)
 +
:*  Bright: &nbsp; white background&nbsp; (recommended for beamers and printouts)
 +
:*  Deuteranopia: &nbsp; for users with pronounced green visual impairment
 +
:*  Protanopia: &nbsp; for users with pronounced red visual impairment
  
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Variationsmöglichkeit für die  graphischen Darstellungen
+
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; Preselection for pulse shape&nbsp; $x_1(t)$ &nbsp; &rArr; &nbsp; red curve
  
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; Parametereingabe per Slider<br>&nbsp; &nbsp; &nbsp; &nbsp;  &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;  &nbsp; links (rot): &bdquo;Pulse 1&rdquo;, &nbsp; &nbsp; &nbsp; &nbsp;  rechts (blau): &bdquo;Pulse 2&rdquo;  
+
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Parameter definition for&nbsp; $x_1(t)$&nbsp;  
  
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Parameter entsprechend der Voreinstellung &nbsp; &rArr; &nbsp; &bdquo;Reset&rdquo;
+
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; Numeric output for&nbsp; $x_1(t_*)$&nbsp; and&nbsp; $X_1(f_*)$
  
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; Einstellung von $t_*$ und $f_*$ für Numerikausgabe
+
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Preselection for pulse shape&nbsp; $x_2(t)$&nbsp; &rArr; &nbsp; blue curve
  
&nbsp; &nbsp; '''(G)''' &nbsp; &nbsp; Numerikausgabe von $x(t_*)$ und $X(f_*)$<br>&nbsp; &nbsp; &nbsp; &nbsp;  &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;  &nbsp; links (rot): &bdquo;Pulse 1&rdquo;, &nbsp; &nbsp; &nbsp; &nbsp;  rechts (blau): &bdquo;Pulse 2&rdquo;  
+
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; Parameter definition for&nbsp; $x_2(t)$&nbsp;  
  
<br clear = all>
+
&nbsp; &nbsp; '''(G)''' &nbsp; &nbsp; Numeric output for&nbsp; $x_2(t_*)$&nbsp; and&nbsp; $X_2(f_*)$
  
 +
&nbsp; &nbsp; '''(H)''' &nbsp; &nbsp; Setting the time&nbsp; $t_*$&nbsp; for the numeric output
  
 +
&nbsp; &nbsp; '''(I)''' &nbsp; &nbsp; Setting the frequency&nbsp; $f_*$&nbsp; for the numeric output
  
'''Details zum obigen Punkt (C)'''
+
&nbsp; &nbsp; '''(J)''' &nbsp; &nbsp; Graphic field for the time domain
 
&nbsp; &nbsp; '''(*)''' &nbsp; Zoom&ndash;Funktionen &bdquo;$+$&rdquo; (Vergrößern), &bdquo;$-$&rdquo; (Verkleinern) und $\rm o$ (Zurücksetzen)
 
  
&nbsp; &nbsp; '''(*)''' &nbsp; Verschiebe&ndash;Funktionen &bdquo;$\leftarrow$&rdquo; (Bildausschnitt nach links, Ordinate nach rechts) sowie &bdquo;$\uparrow$&rdquo; &bdquo;$\downarrow$&rdquo; &bdquo;$\rightarrow$&rdquo;
+
&nbsp; &nbsp; '''(K)''' &nbsp; &nbsp; Graphic field for the frequency domain
  
 +
&nbsp; &nbsp; '''(L)''' &nbsp; &nbsp; Selection of the exercise according to the numbers
  
'''Andere Möglichkeiten''':
+
&nbsp; &nbsp; '''(M)''' &nbsp; &nbsp; Task description and questions
  
*Bei gedrückter Shifttaste und Scrollen kann im Koordinatensystem gezoomt werden.
+
&nbsp; &nbsp; '''(N)''' &nbsp; &nbsp; Show and hide sample solution
*Bei gedrückter Shifttaste und gedrückter linker Maustaste kann das Koordinatensystem verschoben werden.
+
<br clear=all>
<br clear = all>
 
  
 +
==About the Authors==
 +
<br>
 +
This interactive calculation tool was designed and implemented at the&nbsp; [https://www.ei.tum.de/en/lnt/home/ Institute for Communications Engineering]&nbsp; at the&nbsp; [https://www.tum.de/en Technical University of Munich].
 +
*The first version was created in 2005 by&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Ji_Li_.28Bachelorarbeit_EI_2003.2C_Diplomarbeit_EI_2005.29|Ji Li]]&nbsp; as part of her diploma thesis with “FlashMX – Actionscript”&nbsp; (Supervisor:&nbsp; [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]).
 +
*In 2017 the program was redesigned by&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#David_Jobst_.28Ingenieurspraxis_Math_2017.29|David Jobst]]&nbsp; (Ingenieurspraxis_Math, Supervisor: [[Biographies_and_Bibliographies/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]] ) via "HTML5".
 +
*Last revision and English version 2020 by&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Carolin_Mirschina_.28Ingenieurspraxis_Math_2019.2C_danach_Werkstudentin.29|Carolin Mirschina]]&nbsp; in the context of a working student activity.&nbsp;
  
==Über die Autoren==
 
Dieses interaktive Berechnungstool  wurde am [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik] der [https://www.tum.de/ Technischen Universität München] konzipiert und realisiert.
 
*Die erste Version wurde 2005 von [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Ji_Li_.28Bachelorarbeit_EI_2003.2C_Diplomarbeit_EI_2005.29|Ji Li]] im Rahmen ihrer Diplomarbeit mit &bdquo;FlashMX&ndash;Actionscript&rdquo; erstellt (Betreuer: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]] und [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Dr.-Ing._Klaus_Eichin_.28am_LNT_von_1972-2011.29|Klaus Eichin]]).
 
*2017 wurde &bdquo;Impulse & Spektren&rdquo;  von [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#David_Jobst_.28Ingenieurspraxis_Math_2017.29|David Jobst]] im Rahmen seiner Ingenieurspraxis (Betreuer: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28am_LNT_seit_2014.29|Tasnád Kernetzky]])  auf  &bdquo;HTML5&rdquo; umgesetzt und neu gestaltet.
 
  
==Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster==
+
==Once again: Open Applet in new Tab==
{{LntAppletLink|spektrum|Applet in neuem Tab öffnen}}
+
{{LntAppletLinkEnDe|pulsesAndSpectra_en|pulsesAndSpectra}}
 +
<br><br>

Latest revision as of 14:10, 21 April 2023

Open Applet in new Tab   Deutsche Version Öffnen


Applet Description


Time-limited symmetric signals   ⇒   "pulses"  $x(t)$  and the corresponding spectral functions  $X(f)$  are considered, namely

  • Gaussian pulse, 
  • rectangular pulse,  
  • triangular pulse, 
  • trapezoidal pulse, 
  • raised cosine pulse,
  • cosine square pulse.


Further it is to be noted:

  • The functions  $x(t)$  resp.  $X(f)$  are shown for up to two parameter sets in one diagram each.
  • The red curves and numbers apply to the left parameter set, the blue ones to the right parameter set.
  • The abscissas  $t$  (time) and  $f$  (frequency) as well as the ordinates  $x(t)$  (signal values) and  $X(f)$  (spectral values) are normalized.


Theoretical Background


Relationship $x(t)\Leftrightarrow X(f)$

  • The relationship between the time function  $x(t)$  and the spectrum  $X(f)$  is given by the  "first Fourier integral" :
$$X(f)={\rm FT} [x(t)] = \int_{-\infty}^{+\infty}x(t)\cdot {\rm e}^{-{\rm j}2\pi f t}\hspace{0.15cm} {\rm d}t\hspace{1cm} \rm FT\hspace{-0.1cm}: \ Fourier \ transform.$$
  • In order to calculate the time function  $x(f)$  from the spectral function  $x(t)$  one needs the  "second Fourier integral":
$$x(t)={\rm IFT} [X(f)] = \int_{-\infty}^{+\infty}X(f)\cdot {\rm e}^{+{\rm j}2\pi f t}\hspace{0.15cm} {\rm d}f\hspace{1cm} {\rm IFT}\hspace{-0.1cm}: \rm Inverse \ Fourier \ transform.$$
  • In all examples we use real and even functions.  Thus:
$$x(t)=\int_{-\infty}^{+\infty}X(f)\cdot \cos(2\pi ft) \hspace{0.15cm} {\rm d}f \ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\ \ \ X(f)=\int_{-\infty}^{+\infty}x(t)\cdot \cos(2\pi ft) \hspace{0.15cm} {\rm d}t .$$
  • $x(t)$  and  $X(f)$  have different units, for example  $x(t)$  in  $\rm V$,  $X(f)$  in  $\rm V/Hz$.
  • The relationship between this module and the similarly constructed applet  "Frequency response & Impulse response"  is based on the  "Duality Theorem".
  • All times are normalized to a time  $T$  and all frequencies are normalized to  $1/T$   ⇒   the spectral values  $X(f)$  still have to be multiplied by the normalization time  $T$ .


$\text{Example:}$   If one sets a rectangular pulse with amplitude  $A_1 = 1$  and equivalent pulse duration  $\Delta t_1 = 1$  then  $x_1(t)$  in the range  $-0.5 < t < +0. 5$  equal to one and outside this range equal to zero.  The spectral function  $X_1(f)$  proceeds  $\rm si$–shaped with  $X_1(f= 0) = 1$  and the first zero at  $f=1$.

  • If a rectangular pulse with  $A = K = 3 \ \rm V$  and  $\delta t = T = 2 \ \rm ms$  is to be simulated with this setting, then all signal values with  $K = 3 \ \rm V$  and all spectral values with  $K \cdot T = 0. 006 \ \rm V/Hz$  to be multiplied by.
  • The maximum spectral value is then  $X(f= 0) = 0.006 \ \rm V/Hz$  and the first zero is at  $f=1/T = 0.5 \ \rm kHz$.


Gaussian Pulse

  • The time function of the Gaussian pulse with height  $K$  and (equivalent) duration  $\Delta t$  is:
$$x(t)=K\cdot {\rm e}^{-\pi\hspace{0.05cm}\cdot \hspace{0.05cm}(t/\Delta t)^2}.$$
  • The equivalent time duration  $\Delta t$  is obtained from the rectangle of equal area.
  • The value at  $t = \Delta t/2$  is smaller than the value at  $t=0$ by the factor  $0.456$ .
  • For the spectral function we get according to the Fourier transform:
$$X(f)=K\cdot \Delta t \cdot {\rm e}^{-\pi(f\hspace{0.05cm}\cdot \hspace{0.05cm} \Delta t)^2} .$$
  • The smaller the equivalent time duration  $\Delta t$  is, the wider and lower the spectrum   ⇒   "Reciprocity law of bandwidth and pulse duration".
  • Both  $x(t)$  and  $X(f)$  are not exactly zero at any  $f$–  or  $t$–value, respectively.
  • For practical applications, however, the Gaussian pulse can be assumed to be limited in time and frequency.  For example,  $x(t)$  has already dropped to less than  $0.1\% $  of the maximum at  $t=1.5 \delta t$  .


Rectangular Pulse

  • The time function of the rectangular pulse with height  $K$  and (equivalent) duration  $\Delta t$  is:
$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K \\ K /2 \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{for}} \\ {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| < T/2,} \\ {\left| \hspace{0.05cm}t\hspace{0.05cm} \right| = T/2,} \\ {\left|\hspace{0.05cm} t \hspace{0.05cm} \right| > T/2.} \\ \end{array}$$
  • The $\pm \Delta t/2$ value lies midway between the left- and right-hand limits.
  • For the spectral function one obtains according to the laws of the Fourier transform (1st Fourier integral):
$$X(f)=K\cdot \Delta t \cdot {\rm si}(\pi\cdot \Delta t \cdot f) \quad \text{with} \ {\rm si}(x)=\frac{\sin(x)}{x}.$$
  • The spectral value at  $f=0$  is equal to the rectangular area of the time function.
  • The spectral function has zeros at equidistant distances  $1/\delta t$.
  • The integral over the spectral function  $X(f)$  is equal to the signal value at time  $t=0$, i.e. the pulse height  $K$.


Triangular Pulse

  • The time function of the triangular pulse with height  $K$  and (equivalent) duration  $\Delta t$  is:
$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K\cdot (1-|t|/{\Delta t}) \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| < \Delta t,} \\ {\left| \hspace{0.05cm}t\hspace{0.05cm} \right| \ge \Delta t.} \\ \end{array}$$
  • The absolute time duration is  $2 \cdot \Delta t$;  this is twice as large as that of the rectangle.
  • For the spectral function, we obtain according to the Fourier transform:
$$X(f)=K\cdot \Delta f \cdot {\rm si}^2(\pi\cdot \Delta t \cdot f) \quad \text{with} \quad {\rm si}(x)=\frac{\sin(x)}{x}.$$
  • The above time function is equal to the convolution of two rectangular pulses, each with width  $\delta t$.
  • From this follows:  $X(f)$  contains instead of the  ${\rm si}$-function the  ${\rm si}^2$-function.
  • $X(f)$  thus also has zeros at equidistant intervals  $1/\rm f$ .
  • The asymptotic decay of  $X(f)$  occurs here with  $1/f^2$, while for comparison the rectangular pulse decays with  $1/f$ .


Trapezoidal Pulse

The time function of the trapezoidal pulse with height  $K$  and time parameters  $t_1$  and  $t_2$  is:

$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K \\ K\cdot \frac{t_2-|t|}{t_2-t_1} \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{for}}\quad \\ {\rm{for}}\quad \\ {\rm{for}} \quad \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| \le t_1,} \\ {t_1\le \left| \hspace{0.05cm}t\hspace{0.05cm} \right| \le t_2,} \\ {\left|\hspace{0.05cm} t \hspace{0.05cm} \right| \ge t_2.} \\ \end{array}$$
  • For the equivalent pulse duration (rectangle of equal area) holds:   $\Delta t = t_1+t_2$.
  • The rolloff factor (in the time domain) characterizes the slope:
$$r=\frac{t_2-t_1}{t_2+t_1}.$$
  • The special case  $r=0$  corresponds to the rectangular pulse and the special case  $r=1$  to the triangular pulse.
  • For the spectral function one obtains according to the Fourier transform:
$$X(f)=K\cdot \Delta t \cdot {\rm si}(\pi\cdot \Delta t \cdot f)\cdot {\rm si}(\pi \cdot r \cdot \Delta t \cdot f) \quad \text{with} \quad {\rm si}(x)=\frac{\sin(x)}{x}.$$
  • The asymptotic decay of  $X(f)$  lies between  $1/f$  $($for rectangle,  $r=0)$  and  $1/f^2$  $($for triangle,  $r=1)$.


Raised cosine Pulse

The time function of the raised cosine pulse with height  $K$  and time parameters  $t_1$  and  $t_2$  is:

$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K \\ K\cdot \cos^2\Big(\frac{|t|-t_1}{t_2-t_1}\cdot {\pi}/{2}\Big) \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{for}}\quad \\ {\rm{for}}\quad \\ {\rm{for}}\quad \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| \le t_1,} \\ {t_1\le \left| \hspace{0.05cm}t\hspace{0.05cm} \right| \le t_2,} \\ {\left|\hspace{0.05cm} t \hspace{0.05cm} \right| \ge t_2.} \\ \end{array}$$
  • For the equivalent pulse duration (rectangle of equal area) holds:   $\Delta t = t_1+t_2$.
  • The rolloff factor (in the time domain) characterizes the slope:
$$r=\frac{t_2-t_1}{t_2+t_1}.$$
  • The special case  $r=0$  corresponds to the square pulse and the special case  $r=1$  to the cosine square pulse.
  • For the spectral function one obtains according to the Fourier transform:
$$X(f)=K\cdot \Delta t \cdot \frac{\cos(\pi \cdot r\cdot \Delta t \cdot f)}{1-(2\cdot r\cdot \Delta t \cdot f)^2} \cdot {\rm si}(\pi \cdot \Delta t \cdot f).$$
  • The larger the rolloff factor  $r$  is, the faster  $X(f)$  decreases asymptotically with  $f$ .


Cosine square Pulse

  • This is a special case of the raised cosine pulse and results for  $r=1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}t_1=0, \ t_2= \Delta t$:
$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K\cdot \cos^2\Big(\frac{|t|\hspace{0.05cm}\cdot \hspace{0.05cm} \pi}{2\hspace{0.05cm}\cdot \hspace{0.05cm} \Delta t}\Big) \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| < \Delta t,} \\ {\left| \hspace{0.05cm}t\hspace{0.05cm} \right| \ge \Delta t.} \\ \end{array}$$
  • For the spectral function, we obtain according to the Fourier transform:
$$X(f)=K\cdot \Delta f \cdot \frac{\pi}{4}\cdot \big [{\rm si}(\pi(\Delta t\cdot f +0.5))+{\rm si}(\pi(\Delta t\cdot f -0.5))\big ]\cdot {\rm si}(\pi \cdot \Delta t \cdot f).$$
  • Because of the last  ${\rm si}$-function is  $X(f)=0$  for all multiples of  $F=1/\delta t$.  The equidistant zero crossings of the raised cosine pulse are preserved.
  • Because of the bracket expression,  $X(f)$  now exhibits further zero crossings at  $f=\pm1.5 F$,  $\pm2.5 F$,  $\pm3.5 F$, ... .
  • For frequency  $f=\pm F/2$  the spectral values  $K\cdot \Delta t/2$ are obtained.
  • The asymptotic decay of  $X(f)$  runs in this special case with  $1/f^3$.

Exercises


  • First select the number  $(1,\text{...}, 7)$  of the exercise.  The number  $0$  corresponds to a "Reset":  Same setting as at program start.
  • A task description is displayed.  The parameter values ​​are adjusted.  Solution after pressing "Show solution".
  • "Red" refers to the first parameter set ⇒ $x_1(t) \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\ X_1(f)$,  "Blue" refers to the second parameter set ⇒ $x_2(t) \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\ X_2(f)$.
  • Values with magnitude less than  $0.0005$  are output in the program as "zero".


(1)   Compare the  red Gaussian pulse  $(A_1 = 1, \Delta t_1 = 1)$  with the  blue rectangular pulse  $(A_2 = 1, \Delta t_2 = 1)$ ⇒ default setting.
          What are the differences in the time and frequency domain?

  • The Gaussian pulse theoretically reaches infinity in the time as well as in the frequency domain.
  • Practically  $x_1(t)$  for  $|t| > 1.5$  and  $X_1(f)$  for  $|f| > 1.5$  are almost zero.
  • The rectangle is strictly limited in time:  $x_2(|t| > 0.5) \equiv 0$.  $X_2(f)$  has shares in a much larger range than  $X_1(f)$.
  • It holds  $X_1(f = 0) = X_2(f = 0)$  since the integral over the Gaussian pulse  $x_1(t)$  is equal to the integral over the rectangular pulse  $x_2(t)$.


(2)   Compare the  red Gaussian pulse  $(A_1 = 1,  \Delta t_1 = 1)$ with the  blue rectangular pulse  $(A_2 = 1,  \Delta t_2)$.
          Vary the equivalent pulse duration  $\Delta t_2$  between  $0.5$  and  $2$.  Interpret the displayed graphs.

  • One can recognize the reciprocity law of bandwidth and pulse duration.  The greater  $\Delta t_2$, the higher and narrower the spectral function  $X_2(f)$.
  • For each setting of  $\Delta t_2$,  $x_1(t=0)$  and  $x_2(t=0)$  are equal   ⇒   Also, the integrals over  $X_1(f)$  and  $X_2(f)$  are identical.


(3)   Compare the  red Gaussian pulse  $(A_1 = 1,  \Delta t_1 = 1)$ with the  blue rectangular pulse  $(A_2 = 1,  \Delta t_2 = 0.5)$.
          Vary  $\Delta t_2$  between  $0.05$  and  $2$.  Interpret the displayed graphs and extrapolate the result.

  • The blue spectrum is now twice as wide as the red one, but only half as high.  First zero of  $X_1(f)$  at  $f = 1$, of  $X_2(f)$  at  $f = 2$.
  • Reduction of  $\Delta t_2$:  $X_2(f)$  lower and wider.  Very flat course at  $\Delta t_2 = 0.05$:  $X_2(f = 0)= 0.05$,  $X_2(f = \pm 3)= 0.048$.
  • If one choose  $\Delta t_2 = \varepsilon \to 0$  (not possible in the program),  the result would be the almost constant, very small spectrum  $X_2(f)=A \cdot \varepsilon \to 0$.
  • Increasing the amplitude to  $A=1/\varepsilon$  results in the constant spectral function  $X_2(f) = 1$  of the Dirac function  $\delta(t)$.  That means:
  • $\delta(t)$  is approximated by a rectangle  $($width  $\Delta t = \varepsilon \to 0$,  height  $A = 1/\varepsilon \to \infty)$.  The weight of the Dirac function is one:  $x(t) = 1 \cdot \delta (t)$.


(4)   Compare the  rectangular pulse  $(A_1 = 1,   \Delta t_1 = 1)$  with the  triangular pulse  $(A_2 = 1,   \Delta t_2 = 1)$.  Interpret the spectral functions.

  • The (normalized) spectrum of the rectangle  $x_1(t)$  with the (normalized) parameters  $A_1 = 1, \ \ \Delta t_1 = 1$  is:  $X_1(f)= {\rm si}(\pi\cdot f)= {\rm sinc}(f)$.
  • The convolution of the rectangle  $x_1(t)$  with itself gives the triangle  $x_2(t) = x_1(t) \star x_1(t)$.  By the convolution theorem:   $X_2(f) = X_1(f)^2 $.
  • By squaring the  ${\rm sinc}(f)$–shaped spectral function  $X_1(f)$  the zeros of  $X_2(f)$  remain unchanged.  But now it holds that: $X_2(f) \ge 0$.


(5)   Compare the  trapezoidal pulse  $(A_1 = 1, \Delta t_1 = 1, r_1 = 0.5)$  with the  triangular pulse $(A_2 = 1,   \Delta t_2 = 1)$.
         Vary  $r_1$  between  $0$  and  $1$.  Interpret the spectral function  $X_1(f)$.

  • The trapezoidal pulse with roll–off factor  $r_1= 0$  is identical to the rectangular pulse.  The "normalized spectrum" is  $X_1(f)= {\rm sinc}(f)$.
  • The trapezoidal pulse with roll–off factor  $r_1= 1$  is identical to the triangular pulse.  The "normalized spectrum" is  $X_1(f)= {\rm sinc}^2(f)$.
  • In both cases  $X_1(f)$  has equidistant zeros at  $\pm 1$,  $\pm 2$, ...  (none else);   $0 < r_1 < 1$:  depending on  $r_1$  further zeros.


(6)   Compare this  trapezoidal pulse  with the cosine roll-off pulse  $(A_2 = 1,\ \Delta t_2 = 1.0,\ r_2 = 0.5)$.
         Vary  $r_2$  between  $0$  and  $1$.  Interpret the spectral function  $X_2(f)$  for  $r_2 = 0.7$.

  • With the same  $r= 0.5$  the cosine roll-off pulse  $X_2(f)$ is for  $f > 1$  greater in magnitude than the trapezoidal pulse.
  • With the same roll-off factor  $(r_1 = r_2= 0.5)$  the drop of  $X_2(f)$  around the frequency  $f = 0.5$  is steeper than the drop of  $X_1(f)$.
  • With  $r_1 = 0.5$  and  $r_2 = 0.7$  $x_1(t) \approx x_2(t)$  is valid and therefore also  $X_1(f) \approx X_2(f)$.  Comparable edge steepness.


(7)   Compare the  red trapezoidal pulse  $(A_1 = 1, \Delta t_1 = 1, \ r_1 = 1)$  with the  blue cosine roll-off pulse  $(A_2 = 1,\ \Delta t_2 = 1.0, \ r_2 = 1)$.
          Interpret the time function  $x_2(t)$  and the spectral function  $X_2(f)$  system theoretically.

  • $x_2(t) = \cos^2(|t|\cdot \pi/2) \ \ \ \text{for} \ |t| \le 1$  is the  cosine square pulse.  Zeros at  $f = \pm 1$,  $\pm 2$, ...
  • For the frequency  $f=\pm 0.5$  one obtains the spectral values  $X_2(f)=0.5$.  The asymptotic decline is shown here with  $1/f^3$.


Applet Manual

Screenshot


    (A)     Theme (changeable graphical user interface design)

  • Dark:   dark background  (recommended by the authors)
  • Bright:   white background  (recommended for beamers and printouts)
  • Deuteranopia:   for users with pronounced green visual impairment
  • Protanopia:   for users with pronounced red visual impairment

    (B)     Preselection for pulse shape  $x_1(t)$   ⇒   red curve

    (C)     Parameter definition for  $x_1(t)$ 

    (D)     Numeric output for  $x_1(t_*)$  and  $X_1(f_*)$

    (E)     Preselection for pulse shape  $x_2(t)$  ⇒   blue curve

    (F)     Parameter definition for  $x_2(t)$ 

    (G)     Numeric output for  $x_2(t_*)$  and  $X_2(f_*)$

    (H)     Setting the time  $t_*$  for the numeric output

    (I)     Setting the frequency  $f_*$  for the numeric output

    (J)     Graphic field for the time domain

    (K)     Graphic field for the frequency domain

    (L)     Selection of the exercise according to the numbers

    (M)     Task description and questions

    (N)     Show and hide sample solution

About the Authors


This interactive calculation tool was designed and implemented at the  Institute for Communications Engineering  at the  Technical University of Munich.

  • The first version was created in 2005 by  Ji Li  as part of her diploma thesis with “FlashMX – Actionscript”  (Supervisor:  Günter Söder).
  • In 2017 the program was redesigned by  David Jobst  (Ingenieurspraxis_Math, Supervisor: Tasnád Kernetzky ) via "HTML5".
  • Last revision and English version 2020 by  Carolin Mirschina  in the context of a working student activity. 


Once again: Open Applet in new Tab

Open Applet in new Tab   Deutsche Version Öffnen