Zweidimensionale Laplace-Zufallsgrößen (Applet)

From LNTwww
Revision as of 17:15, 12 August 2019 by Guenter (talk | contribs)

Open Applet in a new tab

Programmbeschreibung


Das Applet verdeutlicht die Eigenschaften von mittelwertfreien Laplace–verteilten Zufallsgrößen  $X$  und   $Y\hspace{-0.1cm}$,  gekennzeichnet durch die beiden Parameter  ${\it \lambda_X}$ und  ${\it \lambda_Y}$. Es wird vorausgesetzt, dass  $X$  und   $Y\hspace{-0.1cm}$  statistisch unabhängig seien.

Eine solche Zufallsgröße approximiert zum Beispiel die Amplitudenverteilung eines Audiosignals (Sprache oder Musik). Die Kenntnis hierüber erlaubt die bestmögliche Digitalisierung (nichtlineare Quantisierung) eines solchen Signals.

Das Applet zeigt

  • die zweidimensionale Wahrscheinlichkeitsdichtefunktion   ⇒   $\rm 2D\hspace{-0.1cm}-\hspace{-0.1cm}WDF$  $f_{XY}(x, \hspace{0.1cm}y)$  in dreidimensionaler Darstellung sowie in Form von Höhenlinien,
  • die zugehörige Randwahrscheinlichkeitsdichtefunktion  ⇒   $\rm 1D\hspace{-0.1cm}-\hspace{-0.1cm}WDF$  $f_{X}(x)$  der Zufallsgröße  $X$  als blaue Kurve; ebenso  $f_{Y}(y)$  für die zweite Zufallsgröße,
  • die zweidimensionale Verteilungsfunktion   ⇒   $\rm 2D\hspace{-0.1cm}-\hspace{-0.1cm}VTF$  $F_{XY}(x, \hspace{0.1cm}y)$  als 3D-Plot,
  • die Verteilungsfunktion  ⇒   $\rm 1D\hspace{-0.1cm}-\hspace{-0.1cm}VTF$  $F_{X}(x)$  der Zufallsgröße  $X$; ebenso  $F_{Y}(y)$  als rote Kurve.


Das Applet verwendet das Framework  Plot.ly

Einige Versuche, dass das „lambda” kursiv dargestellt wird:     λ ${\it λ_X}$ $𝜆$ 𝜆

Theoretischer Hintergrund


Definition und Eigenschaften der Laplace–Verteilung

$(1)$  Für die  Wahrscheinlichkeitsdichtefunktion  (WDF,  englisch:  Probability Density Function, kurz: PDF) der Laplace–verteilten Zufallsgröße  $X$  gilt   ⇒   $\rm 1D\hspace{-0.1cm}-\hspace{-0.1cm}WDF$:

$$f_{X}(x)=\frac{\lambda_X} {2}\cdot{\rm e}^ { - \lambda_X \hspace{0.05cm} \cdot \hspace{0.05cm} \vert \hspace{0.05cm} x \hspace{0.05cm} \vert}.$$

$(2)$  Daraus folgt für die  Verteilungsfunktion  (VTF,  englisch:  Cumulative Distribution Function, kurz: CDF)   ⇒   $\rm 1D\hspace{-0.1cm}-\hspace{-0.1cm}VTF$:

$$F_{X}(x) = {\rm Pr}\big [X \le x \big ] = \int_{-\infty}^{x} f_{X}(\xi) \,\,{\rm d}\xi = 0.5 + 0.5 \cdot {\rm sign}(x) \cdot \big [ 1 - {\rm e}^ { - \lambda_X \hspace{0.05cm} \cdot \hspace{0.05cm} \vert \hspace{0.05cm} x \hspace{0.05cm} \vert}\big ] \hspace{0.5cm} \Rightarrow \hspace{0.5cm} F_{X}(-\infty) = 0, \hspace{0.2cm}F_{X}(0) = 0.5, \hspace{0.2cm} F_{X}(+\infty) = 1.$$

$(3)$  Alle  Momente  $m_k = {\rm E}\big [X^k \big ]$  mit ungeradzahligem  $k$  sind Null (Begründung:  Symmetrische WDF). Insbesondere gilt auch für den linearen Mittelwert:  $m_1 = {\rm E}\big [X \big ] = 0$.

$(4)$  Für die   Momente  $m_k = {\rm E}\big [X^k \big ]$  mit geradzahligem  $k$  gilt:

$$m_k = \int_{-\infty}^{+\infty} x^k \cdot f_{X}(x) \,\,{\rm d} x = \frac{k!}{\lambda^k} \hspace{0.5cm} \Rightarrow \hspace{0.5cm} m_2 = \sigma^2 = \frac{2}{\lambda^2}.$$
WDF von Exponentialverteilung und Laplaceverteilung (unten)

$\text{Beispiel: Zusammenhang zwischen Exponentialverteilung und Laplaceverteilung}$ 


Noch nicht durchlesen! Muss ich noch vieles kürzen und ändern


Wir betrachten hier die Wahrscheinlichkeitsdichtefunktionen (WDF) zweier wertkontinuierlicher Zufallsgrößen:

  • Die Zufallsgröße $X$ ist exponentialverteilt (siehe obere Darstellung):   Für $x<0$ ist $f_X(x) = 0$, und für positive $x$–Werte gilt:
$$f_X(x) = \lambda \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}x}\hspace{0.05cm}. $$
  • Dagegen gilt für die laplaceverteilte Zufallsgröße $Y$ im gesamten Bereich$ - \infty < y < + \infty$ (untere Skizze):
$$f_Y(y) = \lambda/2 \cdot {\rm e}^{- \lambda \hspace{0.05cm}\cdot \hspace{0.05cm}\vert y \vert}\hspace{0.05cm}.$$


  • Für die Varianz der exponentialverteiten Zufallsgröße $X$ gilt, wie in Aufgabe 4.1Z hergeleitet:   $\sigma^2 = 1/\lambda^2$.
  • Die Varianz der laplaceverteiten Zufallsgröße $Y$ ist bei gleichem $\it \lambda$ doppelt so groß:   $\sigma^2 = 2/\lambda^2$.

Die Laplaceverteilung ist eine zweiseitige Exponentialverteilung, die insbesondere die Amplitudenverteilung von Sprach– und Musiksignalen ausreichend gut approximiert.

  • Die Momente $k$–ter Ordnung   ⇒   $m_k$ der Laplaceverteilung stimmen für geradzahliges $k$ mit denen der Exponentialverteilung überein.
  • Für ungeradzahliges $k$ ergibt sich dagegen bei der (symmetrischen) Laplaceverteilung stets $m_k= 0$.


Zweidimensionale Wahrscheinlichkeitsdichtefunktion   ⇒   2D–WDF

Wir setzen voraus, dass zwischen den beiden Zufallsgrößen  $X$  und   $Y\hspace{-0.1cm}$  keine statistischen Abhängigkeiten bestehen. Für die Wahrscheinlichkeitsdichtefunktion der zweidimensionalen Zufallsgröße  $XY$  an der Stelle  $(x, y)$ gilt in diesem Fall:

$$f_{XY}(x, \hspace{0.1cm}y) = f_{X}(x) \cdot f_{Y}(y). $$

Sind die Zufallsgrößen $X$  und   $Y\hspace{-0.1cm}$  mittelwertfrei und Laplace–verteilt, dann kann hierfür geschrieben werden:

$$f_{XY}(x, \ y)=\frac{\lambda_X \cdot \lambda_Y} {4}\cdot{\rm e}^ { - \lambda_X \hspace{0.05cm} \cdot \hspace{0.05cm} \vert \hspace{0.05cm} x \hspace{0.05cm} \vert} \cdot {\rm e}^ { - \lambda_Y \hspace{0.05cm} \cdot \hspace{0.05cm} \vert \hspace{0.05cm} y \hspace{0.05cm} \vert}=\frac{\lambda_X \cdot \lambda_Y} {4}\cdot{\rm e}^ { - \hspace{0.05cm}\left (\lambda_X \hspace{0.05cm} \cdot \hspace{0.05cm} \vert \hspace{0.05cm} x \hspace{0.05cm} \vert+ \lambda_Y \hspace{0.05cm} \cdot \hspace{0.05cm} \vert \hspace{0.05cm} y \hspace{0.05cm} \vert \hspace{0.05cm}\right )}.$$
  • Die 2D–Wahrscheinlichkeitsdichtefunktion oder kurz  $\rm 2D\hspace{-0.1cm}-\hspace{-0.1cm}WDF$  ist eine Erweiterung der eindimensionalen WDF.
  • $X$  und  $Y$ bezeichnen die beiden Zufallsgrößen, und  $x \in X$  sowie   $y \in Y$ geben Realisierungen hiervon an.
  • Die für dieses Applet verwendete Nomenklatur unterscheidet sich also geringfügig gegenüber der Beschreibung im Theorieteil.
  • Im hier betrachteten Fall „Statistische Unabhängigkeit” ist das Maximum der 2D–WDF wie folgt gegeben:
$$f_{XY}(x, \ y)=\frac{\lambda_X \cdot \lambda_Y} {4}.$$
  • Aus der Bedingungsgleichung  $f_{XY}(x, y) = {\rm const.}$  können die Höhenlinien der WDF berechnet werden. Beschriftet man die Höhenlinien mit dem Verhältnis  $V$  der entsprechenden $f_{XY}(x, y)$–Werte auf das Maximum, so erhält man als Gleichung für die Höhenlinien:
$$\lambda_X \hspace{0.05cm} \cdot \hspace{0.05cm} \vert \hspace{0.05cm} x \hspace{0.05cm} \vert+ \lambda_Y \hspace{0.05cm} \cdot \hspace{0.05cm} \vert \hspace{0.05cm} y \hspace{0.05cm} \vert \hspace{0.05cm} =\ln \ (1/V) = K.$$
  • Beispielsweise gilt für die  $10\%$–Höhenlinie  $K = \ln \ 10 \approx 2.3$  und für die  $50\%$–Höhenlinie  $K = \ln \ 2 \approx 0.693$.
  • Die Höhenlinien beschreiben in jedem Quadranten Geradenstücke und ergeben insgesamt Vierecke mit den Eckpunkten auf der  $x$– und  $y$–Achse.

Grafik ?

Zweidimensionale Verteilungsfunktion   ⇒   2D–VTF

Noch überarbeiten

$\text{Definition:}$  Die  2D-Verteilungsfunktion  ist ebenso wie die 2D-WDF lediglich eine sinnvolle Erweiterung der  eindimensionalen Verteilungsfunktion  (VTF):

$$F_{XY}(x,y) = {\rm Pr}\big [(X \le x) \cap (Y \le y) \big ] .$$


Es ergeben sich folgende Gemeinsamkeiten und Unterschiede zwischen der „1D-VTF” und der„ 2D-VTF”:

  • Der Funktionalzusammenhang zwischen „2D–WDF” und „2D–VTF” ist wie im eindimensionalen Fall durch die Integration gegeben, aber nun in zwei Dimensionen. Bei kontinuierlichen Zufallsgrößen gilt:
$$F_{XY}(x,y)=\int_{-\infty}^{y} \int_{-\infty}^{x} f_{XY}(\xi,\eta) \,\,{\rm d}\xi \,\, {\rm d}\eta .$$
  • Umgekehrt lässt sich die Wahrscheinlichkeitsdichtefunktion aus der Verteilungsfunktion durch partielle Differentiation nach  $x$  und  $y$  angeben:
$$f_{XY}(x,y)=\frac{{\rm d}^{\rm 2} F_{XY}(\xi,\eta)}{{\rm d} \xi \,\, {\rm d} \eta}\Bigg|_{\left.{x=\xi \atop {y=\eta}}\right.}.$$
  • Bezüglich der Verteilungsfunktion  $F_{XY}(x, y)$  gelten folgende Grenzwerte:
$$F_{XY}(-\infty,\ -\infty) = 0,\hspace{0.5cm}F_{XY}(x,\ +\infty)=F_{X}(x ),\hspace{0.5cm} F_{XY}(+\infty,\ y)=F_{Y}(y ) ,\hspace{0.5cm}F_{XY}(+\infty,\ +\infty) = 1.$$
  • Im Grenzfall $($unendlich große  $x$  und  $y)$  ergibt sich demnach für die „2D-VTF” der Wert  $1$. Daraus erhält man die  Normierungsbedingung  für die 2D-Wahrscheinlichkeitsdichtefunktion:
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f_{XY}(x,y) \,\,{\rm d}x \,\,{\rm d}y=1 . $$

$\text{Fazit:}$  Beachten Sie den signifikanten Unterschied zwischen eindimensionalen und zweidimensionalen Zufallsgrößen:

  • Bei eindimensionalen Zufallsgrößen ergibt die Fläche unter der WDF stets den Wert $1$.
  • Bei zweidimensionalen Zufallsgrößen ist das WDF-Volumen immer gleich $1$.



Versuchsdurchführung


Aufgaben 2D-Gauss.png
  • Wählen Sie zunächst die Nummer (1, ...) der zu bearbeitenden Aufgabe.
  • Eine Aufgabenbeschreibung wird angezeigt. Die Parameterwerte sind angepasst.
  • Lösung nach Drücken von „Musterlösung”.


Die Nummer 0 entspricht einem „Reset”:

  • Gleiche Einstellung wie beim Programmstart.
  • Ausgabe eines „Reset–Textes” mit weiteren Erläuterungen zum Applet.


(1)  Welche 1D–WDF–Werte  $f_X(x=1)$  bzw.  $f_Y(y=1)$  ergeben sich für  $\lambda_X=1$  und  $\lambda_Y=2$ ? Wie lauten die WDF–Werte  $f_X(x=-1)$  bzw.  $f_Y(y=-1)$ ?

  •  Es gilt  $f_{X}(x= 1)=0.5\cdot{\rm e}^ { - 1} = 0.1839$  und  $f_{Y}(y= 1)=1\cdot{\rm e}^ { - 2} = 0.1353$.
  •  Aufgrund der Symmetrie gilt auch  $f_{X}(x= -1)= 0.1839$  und  $f_{Y}(y= -1)= 0.1353$.

(2)  Welche 1D–VTF–Werte  $F_X(x=1)$  bzw.  $F_Y(y=1)$  ergeben sich für  $\lambda_X=1$  und  $\lambda_Y=2$ ? Wie lauten die WDF–Werte  $F_X(x=-1)$  bzw.  $F_Y(y=-1)$ ?

  •  Es gilt  $F_{X}(x= 1)=0.5 + 0.5 \cdot\big [1-{\rm e}^ { - 1}\big] = 0.8161$  und $F_{X}(x= 1)=0.5 + 0.5 \cdot\big [1-{\rm e}^ { - 2}\big] = 0.9323.$
  •  Wegen ${\rm sign}(-1) = -1$ erhält man  $F_{X}(x= -1)=0.5 - 0.5 \cdot\big [1-{\rm e}^ { - 1}\big] = 0.1839$  und $F_{Y}(y=- 1)=0.5 - 0.5 \cdot\big [1-{\rm e}^ { - 2}\big] = 0.0677.$

(3)  Die Einstellungen bleiben erhalten. Wie groß sind die Wahrscheinlichkeiten  ${\rm Pr}(X< 1)$,  ${\rm Pr}(X\le 1)$, ${\rm Pr}(X\le -1)$  und ${\rm Pr}(-1\le X\le +1)$ ?

  •  Es gilt   ${\rm Pr}(X< 1)=F_{X}(x= 1)=0.8161$. Bei einer wertdiskreten Zufalldgröße ist  ${\rm Pr}(X\equiv 1)=0$   ⇒    ${\rm Pr}(X\le 1)={\rm Pr}(X< 1)=0.8161$.
  •  Weiter gilt  ${\rm Pr}(X< -1)=F_{X}(x= -1)=0.1839$  sowie  ${\rm Pr}(-1\le X\le +1)=F_{X}(x= +1) - F_{X}(x= -1)= 0.8161-0.1839 = 0.6322$.

(4)  Betrachten Sie nun die 2D–WDF  für  $\lambda_X=1$  und  $\lambda_Y=1$ ? Wie lauten die 2D–WDF–Werte  $f_{XY}(0, \ 0)$  und  $f_{XY}(2.3, \ 0)$ ?

  •  Mit diesen Parametern ist das Maximum  $f_{XY}(0, \ 0)=0.25$  und der 2D–WDF–Wert  $f_{XY}(2.3, \ 0)=0.25064 \approx f_{XY}(0, \ 0)/10$.
  •  Der Punkt  $(2.3, \ 0)$  liegt somit (näherungsweise) auf der  $10\%$–Höhenlinie, die hier ein um  $45^\circ$  gedrehtes Quadrat ergibt.

(5)  Wie lauten die 2D–WDF–Werte  $f_{XY}(1.1, \ 1.2)$,  $f_{XY}(-1.1, \ -1.2)$  und  $f_{XY}(0.6, \ -1.7)$ ?

  •  Jeder Punkt  $(x_0, \ y_0)$  liegt auf der  $10\%$–Höhenlinie, wenn  $\vert x_0 \vert + \vert y_0 \vert = \ln(10) \approx 2.3$  gilt.
  •  Die drei hier abgefragten Punkte erfüllen diese Bedingung mit hinreichender Genauigkeit.

(6)  Nun gelte  $\lambda_X=2$  und  $\lambda_Y=1$ ? Wie lautet die Geichung der  $10\%$–Höhenlinie im ersten Quadranten ? Kontrollieren Sie das Ergebnis.

  •  Für alle Höhenlinien muss im ersten Quadranten gelten:  $\lambda_Y \cdot y_0 = K - \lambda_X \cdot x_0.$ Für die  $10\%$–Höhenlinie  ist wieder  $K= \ln (1/0.01) = 2.3$  zu setzen.
  •  Daraus folgt:  $y_0 = - \lambda_X/\lambda_Y \cdot x_0 + K/\lambda_Y = -2 \cdot x_0 + 2.3.$  Schnittpunkte mit den Achsen:  $(1.15, \ 0)$  und $(0, \ 2.3)$.
  •  Das Programm bestätigt das Ergebnis:  Maximum  $f_{XY}(0, \ 0) = 0.5$. Bei den genannten Punkten gilt  $f_{XY}(x_0, \ y_0) = 0.05013 \approx 10\%$.


Zur Handhabung des Applets


Anleitung 2D-Gauss.png

    (A)     Parametereingabe per Slider:  $\sigma_X$,  $\sigma_Y$ und  $\rho$

    (B)     Auswahl:  Darstellung von WDF oder VTF

    (C)     Reset:  Einstellung wie beim Programmstart

    (D)     Höhenlinien darstellen anstelle von „1D-WDF”

    (E)     Darstellungsbereich für „2D-WDF”

    (F)     Manipulation der 3D-Grafik (Zoom, Drehen, ...)

    (G)     Darstellungsbereich für „1D-WDF” bzw. „Höhenlinien”

    (H)     Manipulation der 2D-Grafik („1D-WDF”)

    ( I )     Bereich für die Versuchsdurchführung: Aufgabenauswahl

    (J)     Bereich für die Versuchsdurchführung: Aufgabenstellung

    ( L)     Bereich für die Versuchsdurchführung: Musterlösung







Werte–Ausgabe über Maussteuerung (sowohl bei 2D als auch bei 3D)


Über die Autoren

Dieses interaktive Berechnungstool wurde am Lehrstuhl für Nachrichtentechnik der Technischen Universität München konzipiert und realisiert.

  • Die erste Version wurde 2003 von Ji Li im Rahmen ihrer Diplomarbeit mit „FlashMX–Actionscript” erstellt (Betreuer: Günter Söder).
  • 2019 wurde das Programm von Carolin Mirschina  im Rahmen einer Werkstudententätigkeit auf „HTML5” umgesetzt und neu gestaltet (Betreuer: Tasnád Kernetzky).


Die Umsetzung dieses Applets auf HTML 5 wurde durch  Studienzuschüsse  der Fakultät EI der TU München finanziell unterstützt. Wir bedanken uns.


Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster

Open Applet in a new tab