Difference between revisions of "Aufgaben:Exercise 1.07: Check and Generator Matrix of the HC (7, 4, 3)"

From LNTwww
 
(24 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Allgemeine Beschreibung linearer Blockcodes
+
{{quiz-Header|Buchseite=Channel_Coding/General_Description_of_Linear_Block_Codes
  
 
}}
 
}}
  
[[File:P_ID2390__KC_A_1_7.png|right|frame|Prüfgleichungen des (7, 4, 3)–Hamming–Code]]
+
[[File:P_ID2390__KC_A_1_7.png|right|frame|Parity-check equations of the <br>$(7, 4, 3)$ &nbsp;Hamming code ]]
  
Die Grafik zeigt die Prüfgleichungen des (7, 4, 3)–Hamming–Codes, der bereits in der [[Aufgaben:1.6_Zum_(7,_4)–Hamming–Code|Aufgabe 1.6]] eingehend betrachtet und anhand der Codetabelle beschrieben wurde.
+
The graph shows the parity-check equations of the&nbsp; $(7, 4, 3)$&nbsp; Hamming code,&nbsp; which has already been considered in detail in the&nbsp; [[Aufgaben:Exercise_1.6:_(7,_4)_Hamming_Code|"Exercise 1.6"]]&nbsp; and described using the code table.
In dieser Aufgabe wird dieser Code – wie in der Kanalcodierung allgemein üblich – nun durch zwei Matrizen charakterisiert:
 
  
*Die Prüfmatrix '''H''' ist eine Matrix mit $m = n – k$ Zeilen und ''n'' Spalten. Sie beschreibt die $m = 3$ Prüfgleichungen, wobei sich die erste Zeile auf die Elemente des roten Kreises und die zweite Zeile auf die des grünen Kreises bezieht. Die letzte Zeile gibt die Modulo–2–Summe des blauen Kreises wieder.
+
In this task,&nbsp; this code is now characterized by two matrices&nbsp; &ndash;&nbsp; as is common in Channel Coding:
  
*Eine zweite Beschreibungsmöglichkeit bietet die Generatormatrix '''G''', mit ''k'' Zeilen und ''n'' Spalten. Sie gibt den Zusammenhang zwischen den Informationsworten <u>''u''</u> und den Codeworten <u>''x''</u> an:
+
*The parity-check matrix&nbsp; $\boldsymbol{\rm H}$&nbsp; is a matrix with&nbsp; $m = n - k$&nbsp; rows and&nbsp; $n$&nbsp; columns.&nbsp; It describes the&nbsp; $m = 3$&nbsp; parity-check equations,&nbsp; where the first row refers to the elements of the red circle and the second row refers to those of the green circle.&nbsp; The last row gives the modulo-2 sum of the blue circle.
 +
 
 +
*A second description possibility is provided by the generator matrix&nbsp; $ \boldsymbol{\rm G}$&nbsp; with&nbsp; $k$&nbsp; rows and&nbsp; $n$&nbsp; columns.&nbsp; It gives the relationship between the information words&nbsp; $ \underline{u}$&nbsp; and the code words&nbsp; $\underline{x}$&nbsp;:
 
:$$ \underline{x} = \underline{u} \cdot { \boldsymbol{\rm G}} \hspace{0.05cm}.$$
 
:$$ \underline{x} = \underline{u} \cdot { \boldsymbol{\rm G}} \hspace{0.05cm}.$$
  
Daraus und aus der Gleichung '''H''' $· x^{\rm T} = $'''0''' kann der Zusammenhang zwischen der Prüfmatrix '''H''' und der Generatormatrix '''G''' hergestellt werden:
+
From this and from the equation&nbsp; $ \boldsymbol{\rm H} · \underline{x}^{\rm T} = \underline{0}$&nbsp; the relation between the parity-check matrix&nbsp; $ \boldsymbol{\rm H}$&nbsp; and the generator matrix&nbsp; $ \boldsymbol{\rm G}$&nbsp; can be established:
:$$\underline{x}^{\rm T} = { \boldsymbol{\rm G}}^{\rm T} \cdot \underline{u}^{\rm T} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} { \boldsymbol{\rm H}} \cdot { \boldsymbol{\rm G}}^{\rm T} \cdot \underline{u}^{\rm T} = \underline{0}\hspace{0.5cm} \forall \hspace{0.15cm}\underline{u} \in {\rm GF}(2^k)$$
+
:$$\underline{x}^{\rm T} = { \boldsymbol{\rm G}}^{\rm T} \cdot \underline{u}^{\rm T} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} { \boldsymbol{\rm H}} \cdot { \boldsymbol{\rm G}}^{\rm T} \cdot \underline{u}^{\rm T} = \underline{0}\hspace{0.5cm} \forall \hspace{0.15cm}\underline{u} \in {\rm GF}(2^k)\hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm} { \boldsymbol{\rm H}} \cdot { \boldsymbol{\rm G}}^{\rm T} = { \boldsymbol{\rm 0}} \hspace{0.05cm}.$$
 +
 
 +
Note that in these equations&nbsp; "$\underline{0}$"&nbsp; denotes a row vector with&nbsp; $k$&nbsp; elements and&nbsp; "$\boldsymbol{\rm 0}$"&nbsp; denotes a matrix with&nbsp; $m$&nbsp; rows and&nbsp; $k$&nbsp; columns.&nbsp; All elements of&nbsp; "$\underline{0}$"&nbsp; or&nbsp; "$\boldsymbol{\rm 0}"$&nbsp; are zero.
 +
 
 +
If the code is a&nbsp; [[Channel_Coding/General_Description_of_Linear_Block_Codes#Systematic_Codes|systematic code]], the description variables&nbsp; $\boldsymbol{\rm H}$&nbsp; and&nbsp; $\boldsymbol{\rm G}$&nbsp; can be written with the aid of&nbsp; '''identity matrices'''&nbsp; $\boldsymbol{\rm I}$&nbsp; as follows:
 +
 
 +
:$${ \boldsymbol{\rm G}} =\left({ \boldsymbol{\rm I}}_k \: ; \: { \boldsymbol{\rm P}}\right) \hspace{0.5cm} \Rightarrow \hspace{0.5cm}
 +
{ \boldsymbol{\rm H}} = \left({ \boldsymbol{\rm P}}^{\rm T}\: ; \:{ \boldsymbol{\rm I}}_m \right) \hspace{0.05cm}.$$
 +
 
 +
$\boldsymbol{\rm P}$&nbsp; is thereby a matrix with&nbsp; $k$&nbsp; rows and&nbsp; $m$&nbsp; columns.&nbsp; Accordingly, the transposed matrix&nbsp; ${ \boldsymbol{\rm P}}^{\rm T}$&nbsp; consists of&nbsp; $m$&nbsp; rows and&nbsp; $k$&nbsp; columns.
 +
  
:$$\Rightarrow \hspace{0.3cm} { \boldsymbol{\rm H}} \cdot { \boldsymbol{\rm G}}^{\rm T} = { \boldsymbol{\rm 0}} \hspace{0.05cm}.$$
 
  
Anzumerken ist, dass in diesen Gleichungen <u>0</u> einen Zeilenvektor mit ''k'' Elementen bezeichnet und '''0''' eine Matrix mit ''m'' Zeilen und ''k'' Spalten. Alle Elemente von <u>0</u> bzw. '''0''' sind identisch 0.
 
  
Handelt es sich um einen [[Kanalcodierung/Allgemeine_Beschreibung_linearer_Blockcodes#Systematische_Codes|systematischen Code]], so können die beiden Beschreibungsgrößen '''H''' und '''G''' unter Zuhilfenahme von ''Einheitsmatrizen'' wie folgt geschrieben werden:
+
Hints :  
  
:$${ \boldsymbol{\rm G}} \hspace{-0.15cm}\ = \ \hspace{-0.15cm}\left({ \boldsymbol{\rm I}}_k \: ; \: { \boldsymbol{\rm P}}\right) \hspace{0.05cm},$$
+
*This exercise belongs to the chapter&nbsp; [[Channel_Coding/General_Description_of_Linear_Block_Codes|"General Description of Linear Block Codes"]].
:$$ { \boldsymbol{\rm H}} \hspace{-0.15cm}\ = \ \hspace{-0.15cm}\left({ \boldsymbol{\rm P}}^{\rm T}\: ; \:{ \boldsymbol{\rm I}}_m \right) \hspace{0.05cm}.$$
 
  
'''P''' ist dabei eine Matrix mit ''k'' Zeilen und ''m'' Spalten. Dementsprechend besitzt die transponierte Matrix ${ \boldsymbol{\rm P}}^{\rm T} \ m$ Zeilen und ''k'' Spalten.
+
*Reference is made in particular to the sections&nbsp; [[Channel_Coding/General_Description_of_Linear_Block_Codes#Code_definition_by_the_parity-check_matrix|"Code definition by the parity-check matrix"]]&nbsp; and&nbsp; [[Channel_Coding/General_Description_of_Linear_Block_Codes#Code_definition_by_the_generator_matrix|"Code definition by the generator matrix"]].
 
   
 
   
''Hinweis'' :
 
  
Die Aufgabe bezieht sich auf das Kapitel [[Kanalcodierung/Allgemeine_Beschreibung_linearer_Blockcodes|Allgemeine Beschreibung linearer Blockcodes]].
 
  
  
===Fragebogen===
+
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{What is the format of the parity-check matrix&nbsp; $\boldsymbol{\rm H}$?
 +
|type="{}"}
 +
$\text{number of columns} \ = \ $ { 7 }
 +
$\text{number of rows} \ = \ $ { 3 }
 +
 
 +
 
 +
{Which statements are true regarding the parity-check matrix&nbsp; $\boldsymbol{\rm H}$&nbsp;?
 +
|type="[]"}
 +
 
 +
+ The first row is: &nbsp; $(1101100)$.
 +
+ The second row is: &nbsp; $(0111010)$.
 +
+ The third row is: &nbsp; $(1011001)$.
 +
 
 +
{How can you tell that there is a systematic code?
 
|type="[]"}
 
|type="[]"}
- Falsch
 
+ Richtig
 
  
 +
- In each row there is an even number of ones.
 +
+ At the end of&nbsp; $\boldsymbol{\rm H}$&nbsp; you can recognize an identity matrix.
 +
- The middle column of&nbsp; $\boldsymbol{\rm H}$&nbsp; is occupied by ones.
 +
 +
{Give the generator matrix&nbsp; $\boldsymbol{\rm G}$&nbsp;. Which statements are true?
 +
|type="[]"}
  
{Input-Box Frage
+
+ The first row is: &nbsp; $(1000101)$,
|type="{}"}
+
- The second row is: &nbsp; $(0111010)$,
$\alpha$ = { 0.3 }
+
+ The last row is: &nbsp; $(0001111)$.
  
 +
{What code word&nbsp; $x_{11}$&nbsp; results for&nbsp; $u_{11} = (1, 0, 1, 1)$?
 +
|type="[]"}
  
 +
- $x_{11} = (1, 1, 1, 1, 0, 0, 0),$
 +
- $x_{11} = (1, 0, 1, 1, 0, 0, 0),$
 +
+ $x_{11} = (1, 0, 1, 1, 0, 0, 1).$
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''(1)'''&nbsp; The number of columns of the parity-check matrix&nbsp; $\boldsymbol{\rm H}$&nbsp; is equal to the code length&nbsp; $\underline{n = 7}$.
'''2.'''
+
:The number of rows is equal to the number of parity-check equations,&nbsp; in this case&nbsp; $\underline{m = 3} = n - k$.
'''3.'''
+
 
'''4.'''
+
 
'''5.'''
+
 
'''6.'''
+
'''(2)'''&nbsp;  A comparison with the graph in the information section shows that&nbsp; <u>all statements</u>&nbsp; are true.&nbsp; With
'''7.'''
+
 
 +
:$$\underline{x} = ( x_1, x_2, x_3, x_4, x_5, x_6, x_7) = ( u_1, u_2, u_3, u_4, p_1, p_2, p_3)$$
 +
 
 +
results in the following parity-check equations:
 +
 
 +
:$$x_1 \oplus x_2 \oplus x_4 \oplus x_5 \hspace{-0.1cm}\ = \ \hspace{-0.1cm} 0 \hspace{0.3cm}{\rm (red\hspace{0.15cm}circle)}\hspace{0.05cm},$$
 +
:$$x_2 \oplus x_3 \oplus x_4 \oplus x_6 \hspace{-0.1cm}\ = \ \hspace{-0.1cm} 0 \hspace{0.3cm}{\rm (green\hspace{0.15cm}circle)}\hspace{0.05cm},$$
 +
:$$ x_1 \oplus x_3 \oplus x_4 \oplus x_7 \hspace{-0.1cm}\ = \ \hspace{-0.1cm} 0 \hspace{0.3cm}{\rm (blue\hspace{0.15cm}circle)}\hspace{0.05cm}.$$
 +
 
 +
This gives for the parity-check matrix:
 +
 
 +
:$${ \boldsymbol{\rm H}} = \begin{pmatrix} 1 &1 &0 &1 &1 &0 &0\\ 0 &1 &1 &1 &0 &1 &0\\ 1 &0 &1 &1 &0 &0 &1 \end{pmatrix}\hspace{0.05cm}.$$
 +
 
 +
The specification of &nbsp;$\boldsymbol{\rm H}$&nbsp; is not unique.&nbsp; A different order of the parity-check equations would,&nbsp; for example,&nbsp; result in a second parity-check matrix which is also correct:
 +
 
 +
:$${ \boldsymbol{\rm H}}' = \begin{pmatrix} 1 &0 &1 &1 &0 &0 &1\\ 1 &1 &0 &1 &1 &0 &0\\ 0 &1 &1 &1 &0 &1 &0 \end{pmatrix}\hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp;<u>Statement 2</u>&nbsp; is correct:
 +
*For a systematic code,&nbsp; the parity-check matrix can be represented in the following form:
 +
 
 +
:$${ \boldsymbol{\rm H}} =\left({ \boldsymbol{\rm P}}^{\rm T}\: ; \:{ \boldsymbol{\rm I}}_m \right) \hspace{0.05cm}.$$
 +
 
 +
*In the present example,&nbsp; with&nbsp; $m = 3$:
 +
 
 +
:$${ \boldsymbol{\rm P}}^{\rm T} = \begin{pmatrix} 1 &1 &0 &1\\ 0 &1 &1 &1\\ 1 &0 &1 &1 \end{pmatrix}\hspace{0.05cm},\hspace{0.3cm} { \boldsymbol{\rm I}}_3 = \begin{pmatrix} 1 &0 &0\\ 0 &1 &0\\ 0 &0 &1 \end{pmatrix}\hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp;<u>Statement 1 and 3</u>&nbsp; are correct:
 +
*In general,&nbsp; the relationship between the&nbsp; $m×n$&nbsp; parity-check matrix and the&nbsp; $k×n$&nbsp; generator matrix is:
 +
 
 +
:$${ \boldsymbol{\rm H}} \cdot { \boldsymbol{\rm G}}^{\rm T} = { \boldsymbol{\rm 0}} \hspace{0.05cm}$$
 +
 
 +
*The matrix&nbsp; "$ \boldsymbol{\rm 0}$"&nbsp; is filled with zeros only and has&nbsp; $m$&nbsp; rows and&nbsp; $k$&nbsp; columns.&nbsp; For a systematic code – like here – the following relation exists:
 +
 
 +
:$${ \boldsymbol{\rm H}} =\left({ \boldsymbol{\rm P}}^{\rm T}\: ; \:{ \boldsymbol{\rm I}}_m \right) \hspace{0.3cm}\Leftrightarrow \hspace{0.3cm}{ \boldsymbol{\rm G}} =\left({ \boldsymbol{\rm I}}_k \: ; \:{ \boldsymbol{\rm P}} \right) \hspace{0.05cm}.$$
 +
 
 +
*In the present case,&nbsp; one&nbsp; obtains:
 +
 
 +
:$${ \boldsymbol{\rm I}}_4 = \begin{pmatrix} 1 &0 &0 &0\\ 0 &1 &0 &0\\ 0 &0 &1 &0\\ 0 &0 &0 &1 \end{pmatrix}\hspace{0.05cm},\hspace{0.3cm} { \boldsymbol{\rm P}} = \begin{pmatrix} 1 &0 &1\\ 1 &1 &0\\ 0 &1 &1\\ 1 &1 &1 \end{pmatrix}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} { \boldsymbol{\rm G}} = \begin{pmatrix} 1 &0 &0 &0 &1 &0 &1\\ 0 &1 &0 &0 &1 &1 &0\\ 0 &0 &1 &0 &0 &1 &1\\ 0 &0 &0 &1 &1 &1 &1 \end{pmatrix}\hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; The equation to be used is:
 +
:$$\underline{x}_{11} \hspace{-0.15cm}\ = \ \hspace{-0.15cm} \underline{u}_{11} \cdot { \boldsymbol{\rm G}} = \begin{pmatrix} 1 &0 &1 &1 \end{pmatrix} \cdot \begin{pmatrix} 1 &0 &0 &0 &1 &0 &1\\ 0 &1 &0 &0 &1 &1 &0\\ 0 &0 &1 &0 &0 &1 &1\\ 0 &0 &0 &1 &1 &1 &1 \end{pmatrix} = \begin{pmatrix} 1 &0 &1 &1 &0 &0 &1 \end{pmatrix}\hspace{0.05cm}.$$
 +
 
 +
A comparison with the table of&nbsp;  [[Aufgaben:Exercise_1.6:_(7,_4)_Hamming_Code|"Exercise 1.6"]]&nbsp; shows the correctness of this calculation &nbsp; ⇒ &nbsp; <u>Answer 3</u>.
 +
*The answer 1 cannot be correct already because this does not correspond to any systematic coding.  
 +
* (1, 0, 1, 1, 0, 0)&nbsp; according to suggestion 2 is not a valid code word.&nbsp; Hereby the blue parity-check equation  in the graphic in the information section is not fulfilled.
 +
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu  Kanalcodierung|^1.4 Allgemeine Beschreibung linearer Blockcodes
+
[[Category:Channel Coding: Exercises|^1.4 Linear Block Code Description^]]
 
 
^]]
 

Latest revision as of 17:59, 23 January 2023

Parity-check equations of the
$(7, 4, 3)$  Hamming code

The graph shows the parity-check equations of the  $(7, 4, 3)$  Hamming code,  which has already been considered in detail in the  "Exercise 1.6"  and described using the code table.

In this task,  this code is now characterized by two matrices  –  as is common in Channel Coding:

  • The parity-check matrix  $\boldsymbol{\rm H}$  is a matrix with  $m = n - k$  rows and  $n$  columns.  It describes the  $m = 3$  parity-check equations,  where the first row refers to the elements of the red circle and the second row refers to those of the green circle.  The last row gives the modulo-2 sum of the blue circle.
  • A second description possibility is provided by the generator matrix  $ \boldsymbol{\rm G}$  with  $k$  rows and  $n$  columns.  It gives the relationship between the information words  $ \underline{u}$  and the code words  $\underline{x}$ :
$$ \underline{x} = \underline{u} \cdot { \boldsymbol{\rm G}} \hspace{0.05cm}.$$

From this and from the equation  $ \boldsymbol{\rm H} · \underline{x}^{\rm T} = \underline{0}$  the relation between the parity-check matrix  $ \boldsymbol{\rm H}$  and the generator matrix  $ \boldsymbol{\rm G}$  can be established:

$$\underline{x}^{\rm T} = { \boldsymbol{\rm G}}^{\rm T} \cdot \underline{u}^{\rm T} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} { \boldsymbol{\rm H}} \cdot { \boldsymbol{\rm G}}^{\rm T} \cdot \underline{u}^{\rm T} = \underline{0}\hspace{0.5cm} \forall \hspace{0.15cm}\underline{u} \in {\rm GF}(2^k)\hspace{0.3cm} \Rightarrow \hspace{0.3cm} { \boldsymbol{\rm H}} \cdot { \boldsymbol{\rm G}}^{\rm T} = { \boldsymbol{\rm 0}} \hspace{0.05cm}.$$

Note that in these equations  "$\underline{0}$"  denotes a row vector with  $k$  elements and  "$\boldsymbol{\rm 0}$"  denotes a matrix with  $m$  rows and  $k$  columns.  All elements of  "$\underline{0}$"  or  "$\boldsymbol{\rm 0}"$  are zero.

If the code is a  systematic code, the description variables  $\boldsymbol{\rm H}$  and  $\boldsymbol{\rm G}$  can be written with the aid of  identity matrices  $\boldsymbol{\rm I}$  as follows:

$${ \boldsymbol{\rm G}} =\left({ \boldsymbol{\rm I}}_k \: ; \: { \boldsymbol{\rm P}}\right) \hspace{0.5cm} \Rightarrow \hspace{0.5cm} { \boldsymbol{\rm H}} = \left({ \boldsymbol{\rm P}}^{\rm T}\: ; \:{ \boldsymbol{\rm I}}_m \right) \hspace{0.05cm}.$$

$\boldsymbol{\rm P}$  is thereby a matrix with  $k$  rows and  $m$  columns.  Accordingly, the transposed matrix  ${ \boldsymbol{\rm P}}^{\rm T}$  consists of  $m$  rows and  $k$  columns.



Hints :



Questions

1

What is the format of the parity-check matrix  $\boldsymbol{\rm H}$?

$\text{number of columns} \ = \ $

$\text{number of rows} \ = \ $

2

Which statements are true regarding the parity-check matrix  $\boldsymbol{\rm H}$ ?

The first row is:   $(1101100)$.
The second row is:   $(0111010)$.
The third row is:   $(1011001)$.

3

How can you tell that there is a systematic code?

In each row there is an even number of ones.
At the end of  $\boldsymbol{\rm H}$  you can recognize an identity matrix.
The middle column of  $\boldsymbol{\rm H}$  is occupied by ones.

4

Give the generator matrix  $\boldsymbol{\rm G}$ . Which statements are true?

The first row is:   $(1000101)$,
The second row is:   $(0111010)$,
The last row is:   $(0001111)$.

5

What code word  $x_{11}$  results for  $u_{11} = (1, 0, 1, 1)$?

$x_{11} = (1, 1, 1, 1, 0, 0, 0),$
$x_{11} = (1, 0, 1, 1, 0, 0, 0),$
$x_{11} = (1, 0, 1, 1, 0, 0, 1).$


Solution

(1)  The number of columns of the parity-check matrix  $\boldsymbol{\rm H}$  is equal to the code length  $\underline{n = 7}$.

The number of rows is equal to the number of parity-check equations,  in this case  $\underline{m = 3} = n - k$.


(2)  A comparison with the graph in the information section shows that  all statements  are true.  With

$$\underline{x} = ( x_1, x_2, x_3, x_4, x_5, x_6, x_7) = ( u_1, u_2, u_3, u_4, p_1, p_2, p_3)$$

results in the following parity-check equations:

$$x_1 \oplus x_2 \oplus x_4 \oplus x_5 \hspace{-0.1cm}\ = \ \hspace{-0.1cm} 0 \hspace{0.3cm}{\rm (red\hspace{0.15cm}circle)}\hspace{0.05cm},$$
$$x_2 \oplus x_3 \oplus x_4 \oplus x_6 \hspace{-0.1cm}\ = \ \hspace{-0.1cm} 0 \hspace{0.3cm}{\rm (green\hspace{0.15cm}circle)}\hspace{0.05cm},$$
$$ x_1 \oplus x_3 \oplus x_4 \oplus x_7 \hspace{-0.1cm}\ = \ \hspace{-0.1cm} 0 \hspace{0.3cm}{\rm (blue\hspace{0.15cm}circle)}\hspace{0.05cm}.$$

This gives for the parity-check matrix:

$${ \boldsymbol{\rm H}} = \begin{pmatrix} 1 &1 &0 &1 &1 &0 &0\\ 0 &1 &1 &1 &0 &1 &0\\ 1 &0 &1 &1 &0 &0 &1 \end{pmatrix}\hspace{0.05cm}.$$

The specification of  $\boldsymbol{\rm H}$  is not unique.  A different order of the parity-check equations would,  for example,  result in a second parity-check matrix which is also correct:

$${ \boldsymbol{\rm H}}' = \begin{pmatrix} 1 &0 &1 &1 &0 &0 &1\\ 1 &1 &0 &1 &1 &0 &0\\ 0 &1 &1 &1 &0 &1 &0 \end{pmatrix}\hspace{0.05cm}.$$


(3) Statement 2  is correct:

  • For a systematic code,  the parity-check matrix can be represented in the following form:
$${ \boldsymbol{\rm H}} =\left({ \boldsymbol{\rm P}}^{\rm T}\: ; \:{ \boldsymbol{\rm I}}_m \right) \hspace{0.05cm}.$$
  • In the present example,  with  $m = 3$:
$${ \boldsymbol{\rm P}}^{\rm T} = \begin{pmatrix} 1 &1 &0 &1\\ 0 &1 &1 &1\\ 1 &0 &1 &1 \end{pmatrix}\hspace{0.05cm},\hspace{0.3cm} { \boldsymbol{\rm I}}_3 = \begin{pmatrix} 1 &0 &0\\ 0 &1 &0\\ 0 &0 &1 \end{pmatrix}\hspace{0.05cm}.$$


(4) Statement 1 and 3  are correct:

  • In general,  the relationship between the  $m×n$  parity-check matrix and the  $k×n$  generator matrix is:
$${ \boldsymbol{\rm H}} \cdot { \boldsymbol{\rm G}}^{\rm T} = { \boldsymbol{\rm 0}} \hspace{0.05cm}$$
  • The matrix  "$ \boldsymbol{\rm 0}$"  is filled with zeros only and has  $m$  rows and  $k$  columns.  For a systematic code – like here – the following relation exists:
$${ \boldsymbol{\rm H}} =\left({ \boldsymbol{\rm P}}^{\rm T}\: ; \:{ \boldsymbol{\rm I}}_m \right) \hspace{0.3cm}\Leftrightarrow \hspace{0.3cm}{ \boldsymbol{\rm G}} =\left({ \boldsymbol{\rm I}}_k \: ; \:{ \boldsymbol{\rm P}} \right) \hspace{0.05cm}.$$
  • In the present case,  one  obtains:
$${ \boldsymbol{\rm I}}_4 = \begin{pmatrix} 1 &0 &0 &0\\ 0 &1 &0 &0\\ 0 &0 &1 &0\\ 0 &0 &0 &1 \end{pmatrix}\hspace{0.05cm},\hspace{0.3cm} { \boldsymbol{\rm P}} = \begin{pmatrix} 1 &0 &1\\ 1 &1 &0\\ 0 &1 &1\\ 1 &1 &1 \end{pmatrix}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} { \boldsymbol{\rm G}} = \begin{pmatrix} 1 &0 &0 &0 &1 &0 &1\\ 0 &1 &0 &0 &1 &1 &0\\ 0 &0 &1 &0 &0 &1 &1\\ 0 &0 &0 &1 &1 &1 &1 \end{pmatrix}\hspace{0.05cm}.$$


(5)  The equation to be used is:

$$\underline{x}_{11} \hspace{-0.15cm}\ = \ \hspace{-0.15cm} \underline{u}_{11} \cdot { \boldsymbol{\rm G}} = \begin{pmatrix} 1 &0 &1 &1 \end{pmatrix} \cdot \begin{pmatrix} 1 &0 &0 &0 &1 &0 &1\\ 0 &1 &0 &0 &1 &1 &0\\ 0 &0 &1 &0 &0 &1 &1\\ 0 &0 &0 &1 &1 &1 &1 \end{pmatrix} = \begin{pmatrix} 1 &0 &1 &1 &0 &0 &1 \end{pmatrix}\hspace{0.05cm}.$$

A comparison with the table of  "Exercise 1.6"  shows the correctness of this calculation   ⇒   Answer 3.

  • The answer 1 cannot be correct already because this does not correspond to any systematic coding.
  • (1, 0, 1, 1, 0, 0)  according to suggestion 2 is not a valid code word.  Hereby the blue parity-check equation in the graphic in the information section is not fulfilled.