Difference between revisions of "Aufgaben:Exercise 1.10: Some Generator Matrices"

From LNTwww
Line 4: Line 4:
 
[[File:P_ID2404__KC_A_1_10.png|right|frame|Considered generator matrices]]
 
[[File:P_ID2404__KC_A_1_10.png|right|frame|Considered generator matrices]]
  
We now consider various binary codes of uniform length  $n$. All codes of the form
+
We now consider various binary codes of uniform length  $n$.  All codes of the form
:$$\underline{x} \hspace{-0.15cm}\ = \ \hspace{-0.15cm} ( x_1, x_2, \ \text{...} \  \hspace{0.05cm}, x_n) \hspace{0.5cm}\text{mit}
+
:$$\underline{x} \hspace{-0.15cm}\ = \ \hspace{-0.15cm} ( x_1,\ x_2, \ \text{...} \  \hspace{0.05cm},\ x_n) \hspace{0.5cm}\text{with}
\hspace{0.5cm} x_i \hspace{-0.15cm}\ \in \ \hspace{-0.15cm} \{ 0, 1 \},\hspace{0.2cm} i = 1, \hspace{0.05cm} \text{...} \ \hspace{0.05cm}, n$$
+
\hspace{0.5cm} x_i \hspace{-0.15cm}\ \in \ \hspace{-0.15cm} \{ 0,\ 1 \},\hspace{0.2cm} i = 1, \hspace{0.05cm} \text{...} \ \hspace{0.05cm}, n$$
  
can be represented and interpreted in an $n$-dimensional vector space.   ⇒   ${\rm GF}(2^n)$.
+
can be represented and interpreted in an  $n$-dimensional vector space.   ⇒   ${\rm GF}(2^n)$.
  
A  $k×n$ generator matrix  $\mathbf{G}$  (i.e. a matrix with  $k$  rows and  $n$  columns) yields a  $(n, \, k)$ code, but only if the rank of the matrix  $\mathbf{G}$  is also equal  $k$ . Further holds:
+
The  $k×n$  generator matrix  $\mathbf{G}$  (matrix with  $k$  rows and  $n$  columns)  yields a  $(n, \, k)$  code,  but only if the rank of the matrix  $\mathbf{G}$  is also equal  $k$.  Further holds:
  
*Each code  $\mathcal{C}$  spans a  $k$-dimensional linear subspace of the Galois field  ${\rm GF}(2^n)$ .
+
*Each code  $\mathcal{C}$  spans a  $k$-dimensional linear subspace of the Galois field  ${\rm GF}(2^n)$.
  
*As basis vectors of this subspace,  $k$  independent codewords of  $\mathcal{C}$  can be used. There is no further restriction for the basis vectors.
+
*As basis vectors of this subspace,  $k$  independent code words of  $\mathcal{C}$  can be used.  There is no further restriction for the basis vectors.
  
*The parity-check matrix  $\mathbf{H}$  also spans a subspace of  ${\rm GF}(2^n)$  . But this has dimension  $m = n - k$  and is orthogonal to the subspace based on  $\mathbf{G}$ .
+
*The parity-check matrix  $\mathbf{H}$  also spans a subspace of  ${\rm GF}(2^n)$.  But this has dimension  $m = n - k$  and is orthogonal to the subspace based on  $\mathbf{G}$.
  
*For a linear code,  $\underline{x} = \underline{u} - \boldsymbol{ {\rm G}}$, where  $\underline{u} = (u_{1}, \, u_{2}, \, \text{...} \, , \, u_{k})$  indicates the information word. A systematic code exists if  $x_{1} = u_{1}, \, \text{...} \, , \, x_{k} = u_{k}$  holds.
+
*For a linear code   ⇒   $\underline{x} = \underline{u} \cdot \boldsymbol{ {\rm G}}$,  where  $\underline{u} = (u_{1}, \, u_{2}, \, \text{...} \, , \, u_{k})$  indicates the information word.  A systematic code exists if  $x_{1} = u_{1}, \, \text{...} \, , \, x_{k} = u_{k}$  holds.
  
 +
*In a systematic code,  there is a simple relationship between  $\mathbf{G}$  and  $\mathbf{H}$.  For more details,  see the  [[Channel_Coding/General_Description_of_Linear_Block_Codes#Systematic_Codes|"Theory Section"]].
  
*In a systematic code, there is a simple relationship between  $\mathbf{G}$  and  $\mathbf{H}$. For more details, see the  [[Channel_Coding/General_Description_of_Linear_Block_Codes#Systematic_Codes|theory section]].
 
  
  
  
  
 +
Hints :
  
 +
*This exercise belongs to the chapter  [[Channel_Coding/General_Description_of_Linear_Block_Codes|"General Description of Linear Block Codes"]].
  
Hints :
+
*For the whole exercise holds  $n = 6$.
  
*This exercise belongs to the chapter  [[Channel_Coding/General_Description_of_Linear_Block_Codes|General Description of Linear Block Codes]].
+
*In the subtask  '''(4)'''  it is to be clarified which of the matrices  $\boldsymbol{ {\rm G}}_{\rm A}, \ \boldsymbol{ {\rm G}}_{\rm B}$ resp. $ \boldsymbol{ {\rm G}}_{\rm C}$  result in a  $(6, \, 3)$  block code with the code words listed below:
*For the whole exercise holds  $n = 6$.
 
*In the subtask '''(4)''' it is to be clarified which of the matrices  $\boldsymbol{ {\rm G}}_{\rm A}, \ \boldsymbol{ {\rm G}}_{\rm B}$ resp. $ \boldsymbol{ {\rm G}}_{\rm C}$  result in a $(6, \, 3)$ block code with the code words listed below:
 
  
:$$  (  0, 0, 0, 0, 0, 0), \hspace{0.1cm}(0, 0, 1, 0, 1, 1), \hspace{0.1cm}(0, 1, 0, 1, 0, 1), \hspace{0.1cm}(0, 1, 1, 1, 1, 0), \hspace{0.1cm} (  1, 0, 0, 1, 1, 0), \hspace{0.1cm}(1, 0, 1, 1, 0, 1), \hspace{0.1cm}(1, 1, 0, 0, 1, 1), \hspace{0.1cm}(1, 1, 1, 0, 0, 0)\hspace{0.05cm}.$$
+
:$$  (  0, 0, 0, 0, 0, 0), \hspace{0.3cm}(0, 0, 1, 0, 1, 1), \hspace{0.3cm}(0, 1, 0, 1, 0, 1), \hspace{0.3cm}(0, 1, 1, 1, 1, 0), \hspace{0.3cm} (  1, 0, 0, 1, 1, 0), \hspace{0.3cm}(1, 0, 1, 1, 0, 1), \hspace{0.3cm}(1, 1, 0, 0, 1, 1), \hspace{0.3cm}(1, 1, 1, 0, 0, 0)\hspace{0.05cm}.$$
  
  
Line 40: Line 40:
 
===Questions===
 
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Known are only the two code words&nbsp; $(0, 1, 0, 1, 0, 1)$&nbsp; and&nbsp; $(1, 0, 0, 1, 1, 0)$&nbsp; of a linear code. Which statements are true?
+
{Known are only the two code words&nbsp; $(0, 1, 0, 1, 0, 1)$&nbsp; and&nbsp; $(1, 0, 0, 1, 1, 0)$&nbsp; of a linear code.&nbsp; Which statements are true?
 
|type="[]"}
 
|type="[]"}
- It could be a&nbsp; $(5, \, 2)$ code.
+
- It could be a&nbsp; $(5, \, 2)$&nbsp; code.
+ It could be a&nbsp; $(6, \, 2)$ code.
+
+ It could be a&nbsp; $(6, \, 2)$&nbsp; code.
+ It could be a&nbsp; $(6, \, 3)$ code.
+
+ It could be a&nbsp; $(6, \, 3)$&nbsp; code.
  
  
{What are the four code words of the linear&nbsp; $(6, \, 2)$ code explicitly?
+
{What are the four code words of the linear&nbsp; $(6, \, 2)$&nbsp; code explicitly?
|type="[]"}  
+
|type="()"}  
 
- $(0 0 1 0 1 1), \ (0 1 0 1 0 1), \ (1 0 0 1 1 0), \ (1 1 0 0 1 1).$
 
- $(0 0 1 0 1 1), \ (0 1 0 1 0 1), \ (1 0 0 1 1 0), \ (1 1 0 0 1 1).$
 
+ $(0 0 0 0 0 0), \ (0 1 0 1 0 1), \ (1 0 0 1 1 0), \ (1 1 0 0 1 1).$
 
+ $(0 0 0 0 0 0), \ (0 1 0 1 0 1), \ (1 0 0 1 1 0), \ (1 1 0 0 1 1).$
Line 54: Line 54:
  
  
{Which statements are true for this&nbsp; $(6, \, 2)$ code $C$?
+
{Which statements are true for this&nbsp; $(6, \, 2)$&nbsp; code&nbsp; $\mathcal{C}$?
 
|type="[]"}
 
|type="[]"}
+ For all codewords&nbsp; $(i = 1,\hspace{0.05cm} \text{ ...} \ , 4)$&nbsp; $\underline{x}_{i} \in {\rm GF}(2^6)$.
+
+ For all code words&nbsp; $(i = 1,\hspace{0.05cm} \text{ ...} \ , 4)$ &nbsp; &rArr; &nbsp; $\underline{x}_{i} \in {\rm GF}(2^6)$.
+ $C$&nbsp; is a two-dimensional linear subvector space of&nbsp; ${\rm GF}(2^6)$.
+
+ $\mathcal{C}$&nbsp; is a two-dimensional linear subvector space of&nbsp; ${\rm GF}(2^6)$.
+ $\mathbf{G}$&nbsp; gives basis vectors of this subvector space&nbsp; ${\rm GF}(2^2)$&nbsp;.
+
+ $\mathbf{G}$&nbsp; gives basis vectors of this subvector space&nbsp; ${\rm GF}(2^2)$.
- $\mathbf{G}$&nbsp; and&nbsp; $\mathbf{H}$&nbsp; are each&nbsp; $2×6$ matrices.
+
- $\mathbf{G}$&nbsp; and&nbsp; $\mathbf{H}$&nbsp; are each&nbsp; $2×6$&nbsp; matrices.
  
  
{Which of the generator matrices given in the graphic result in a&nbsp; $(6, \, 3)$ code?
+
{Which of the generator matrices given in the graphic result in a&nbsp; $(6, \, 3)$&nbsp; code?
 
|type="[]"}
 
|type="[]"}
+ the generator matrix&nbsp; $\boldsymbol{ {\rm G}}_{\rm A}$,
+
+ The generator matrix&nbsp; $\boldsymbol{ {\rm G}}_{\rm A}$,
 
+ the generator matrix&nbsp; $\boldsymbol{ {\rm G}}_{\rm B}$,
 
+ the generator matrix&nbsp; $\boldsymbol{ {\rm G}}_{\rm B}$,
 
- the generator matrix&nbsp; $\boldsymbol{ {\rm G}}_{\rm C}$.
 
- the generator matrix&nbsp; $\boldsymbol{ {\rm G}}_{\rm C}$.

Revision as of 16:56, 11 July 2022

Considered generator matrices

We now consider various binary codes of uniform length  $n$.  All codes of the form

$$\underline{x} \hspace{-0.15cm}\ = \ \hspace{-0.15cm} ( x_1,\ x_2, \ \text{...} \ \hspace{0.05cm},\ x_n) \hspace{0.5cm}\text{with} \hspace{0.5cm} x_i \hspace{-0.15cm}\ \in \ \hspace{-0.15cm} \{ 0,\ 1 \},\hspace{0.2cm} i = 1, \hspace{0.05cm} \text{...} \ \hspace{0.05cm}, n$$

can be represented and interpreted in an  $n$-dimensional vector space.   ⇒   ${\rm GF}(2^n)$.

The  $k×n$  generator matrix  $\mathbf{G}$  (matrix with  $k$  rows and  $n$  columns)  yields a  $(n, \, k)$  code,  but only if the rank of the matrix  $\mathbf{G}$  is also equal  $k$.  Further holds:

  • Each code  $\mathcal{C}$  spans a  $k$-dimensional linear subspace of the Galois field  ${\rm GF}(2^n)$.
  • As basis vectors of this subspace,  $k$  independent code words of  $\mathcal{C}$  can be used.  There is no further restriction for the basis vectors.
  • The parity-check matrix  $\mathbf{H}$  also spans a subspace of  ${\rm GF}(2^n)$.  But this has dimension  $m = n - k$  and is orthogonal to the subspace based on  $\mathbf{G}$.
  • For a linear code   ⇒   $\underline{x} = \underline{u} \cdot \boldsymbol{ {\rm G}}$,  where  $\underline{u} = (u_{1}, \, u_{2}, \, \text{...} \, , \, u_{k})$  indicates the information word.  A systematic code exists if  $x_{1} = u_{1}, \, \text{...} \, , \, x_{k} = u_{k}$  holds.
  • In a systematic code,  there is a simple relationship between  $\mathbf{G}$  and  $\mathbf{H}$.  For more details,  see the  "Theory Section".



Hints :

  • For the whole exercise holds  $n = 6$.
  • In the subtask  (4)  it is to be clarified which of the matrices  $\boldsymbol{ {\rm G}}_{\rm A}, \ \boldsymbol{ {\rm G}}_{\rm B}$ resp. $ \boldsymbol{ {\rm G}}_{\rm C}$  result in a  $(6, \, 3)$  block code with the code words listed below:
$$ ( 0, 0, 0, 0, 0, 0), \hspace{0.3cm}(0, 0, 1, 0, 1, 1), \hspace{0.3cm}(0, 1, 0, 1, 0, 1), \hspace{0.3cm}(0, 1, 1, 1, 1, 0), \hspace{0.3cm} ( 1, 0, 0, 1, 1, 0), \hspace{0.3cm}(1, 0, 1, 1, 0, 1), \hspace{0.3cm}(1, 1, 0, 0, 1, 1), \hspace{0.3cm}(1, 1, 1, 0, 0, 0)\hspace{0.05cm}.$$


Questions

1

Known are only the two code words  $(0, 1, 0, 1, 0, 1)$  and  $(1, 0, 0, 1, 1, 0)$  of a linear code.  Which statements are true?

It could be a  $(5, \, 2)$  code.
It could be a  $(6, \, 2)$  code.
It could be a  $(6, \, 3)$  code.

2

What are the four code words of the linear  $(6, \, 2)$  code explicitly?

$(0 0 1 0 1 1), \ (0 1 0 1 0 1), \ (1 0 0 1 1 0), \ (1 1 0 0 1 1).$
$(0 0 0 0 0 0), \ (0 1 0 1 0 1), \ (1 0 0 1 1 0), \ (1 1 0 0 1 1).$
$(0 0 0 0 0 0), \ (0 1 0 1 0 1), \ (1 0 0 1 1 0), \ (1 1 1 0 0 0).$

3

Which statements are true for this  $(6, \, 2)$  code  $\mathcal{C}$?

For all code words  $(i = 1,\hspace{0.05cm} \text{ ...} \ , 4)$   ⇒   $\underline{x}_{i} \in {\rm GF}(2^6)$.
$\mathcal{C}$  is a two-dimensional linear subvector space of  ${\rm GF}(2^6)$.
$\mathbf{G}$  gives basis vectors of this subvector space  ${\rm GF}(2^2)$.
$\mathbf{G}$  and  $\mathbf{H}$  are each  $2×6$  matrices.

4

Which of the generator matrices given in the graphic result in a  $(6, \, 3)$  code?

The generator matrix  $\boldsymbol{ {\rm G}}_{\rm A}$,
the generator matrix  $\boldsymbol{ {\rm G}}_{\rm B}$,
the generator matrix  $\boldsymbol{ {\rm G}}_{\rm C}$.


Solution

(1)  Correct are the suggested solutions 2 and 3:

  • The codeword length is $n = $6  ⇒  the $(5, \, 2)$ code is not eligible.
  • For a $(6, \, 2)$ code, there are $2^2 = 4$ distinct codewords, and for the $(6, \, 3)$ code, there are correspondingly $2^3 = 8$.
  • By specifying only two codewords, neither the $(6, \, 2)$ code nor the $(6, \, 3)$ code can be excluded.


(2)  Correct is the solution suggestion 2:

  • Since this is a linear code, the modulo $2$ sum must also be a valid codeword:
$$(0, 1, 0, 1, 0, 1) \oplus (1, 0, 0, 1, 1, 0) = (1, 1, 0, 0, 1, 1)\hspace{0.05cm}.$$
  • Likewise the all zero word:
$$(0, 1, 0, 1, 0, 1) \oplus (0, 1, 0, 1, 0, 1) = (0, 0, 0, 0, 0, 0)\hspace{0.05cm}.$$


(3)  Correct here are the statements 1 to 3:

  • Basis vectors of the generator matrix $\mathbf{G}$ are, for example, the two given codewords, from which the parity-check matrix $\mathbf{H}$ can also be determined:
$${ \boldsymbol{\rm G}}_{(6,\hspace{0.05cm} 2)} = \begin{pmatrix} 1 &0 &0 &1 &1 &0\\ 0 &1 &0 &1 &0 &1 \end{pmatrix} \hspace{0.3cm} \Rightarrow\hspace{0.3cm} { \boldsymbol{\rm H}}_{(6,\hspace{0.05cm} 2)} = \begin{pmatrix} 0 &0 &1 &0 &0 &0\\ 1 &1 &0 &1 &0 &0\\ 1 &0 &0 &0 &1 &0\\ 0 &1 &0 &0 &0 &1 \end{pmatrix}\hspace{0.05cm}.$$
  • In general, the $k$ basis vectors of the generator matrix $\mathbf{G}$ form a $k$-dimensional subspace and the $m×n$ matrix $\mathbf{H}$ (with $m = n - k$) forms an orthogonal subspace of dimension $m$.


Note: The code given here

$$\mathcal{C}_{(6,\hspace{0.05cm} 2)} = \{ (0, 0, 0, 0, 0, 0), \hspace{0.1cm}(0, 1, 0, 1, 0, 1), (1, 0, 0, 1, 1, 0), \hspace{0.1cm}(1, 1, 0, 0, 1, 1) \}$$

is not very effective, since $p_{1} = x_{3}$ is always $0$. By puncturing this redundant bit you get the code

$$\mathcal{C}_{(5,\hspace{0.05cm} 2)} = \{ (0, 0, 0, 0, 0), \hspace{0.1cm}(0, 1, 1, 0, 1), (1, 0, 1, 1, 0), \hspace{0.1cm}(1, 1, 0, 1, 1) \}$$

with the same minimum distance $d_{\rm min} = 3$, but larger code rate $R = 2/5$ compared to $R = 1/3$.


(4)  Correct are the suggested solutions 1 and 2:

  • The three rows $g_1, \ g_2$ and $g_3$ of the matrix $\mathbf{G}_{\rm A}$ are suitable as basis vectors, since they are linearly independent, that is, it holds
$$\underline{g}_1 \oplus \underline{g}_2 \hspace{-0.15cm} \ \ne \ \hspace{-0.15cm} \underline{g}_3\hspace{0.05cm},\hspace{0.5cm} \underline{g}_1 \oplus \underline{g}_3 \hspace{-0.15cm} \ \ne \ \hspace{-0.15cm} \underline{g}_2\hspace{0.05cm},\hspace{0.5cm} \underline{g}_2 \oplus \underline{g}_3 \hspace{-0.15cm} \ \ne \ \hspace{-0.15cm} \underline{g}_1\hspace{0.05cm}.$$
  • The same is true for matrix $\mathbf{G}_{\rm B}$. The basis vectors are chosen here so that the code is also systematic.
  • For the last generator matrix holds: $\underline{g}_{1}⊕\underline{g}_{2} = \underline{g}_{3}$   ⇒   the rank of matrix (2) is smaller than its order (3).
  • Here not only $\underline{u} = (0, 0, 0)$ leads to the codeword $(0, 0, 0, 0, 0)$, but also $\underline{u} = (1, 1, 1)$.