Difference between revisions of "Aufgaben:Exercise 1.11Z: Syndrome Decoding again"

From LNTwww
Line 1: Line 1:
 
{{quiz-Header|Buchseite=Kanalcodierung/Decodierung linearer Blockcodes}}
 
{{quiz-Header|Buchseite=Kanalcodierung/Decodierung linearer Blockcodes}}
  
[[File:P_ID2399__KC_Z_1_10.png|right|frame|Schaubild der Prüfgleichungen]]
+
[[File:P_ID2399__KC_Z_1_10.png|right|frame|Schaubild: Prüfgleichungen]]
  
 
Betrachtet wird die gleiche Konstellation wie in der [[Aufgaben:1.11_Syndromdecodierung|Aufgabe 1.11]], nämlich die Decodierung eines $(7, 4, 3)$–Hamming–Codes mit der Prüfmatrix
 
Betrachtet wird die gleiche Konstellation wie in der [[Aufgaben:1.11_Syndromdecodierung|Aufgabe 1.11]], nämlich die Decodierung eines $(7, 4, 3)$–Hamming–Codes mit der Prüfmatrix
Line 11: Line 11:
 
:$${ \boldsymbol{\rm G}} = \begin{pmatrix} 1 &0 &0 &0 &1 &0 &1\\ 0 &1 &0 &0 &1 &1 &0\\ 0 &0 &1 &0 &0 &1 &1\\ 0 &0 &0 &1 &1 &1 &1 \end{pmatrix}\hspace{0.05cm}.$$
 
:$${ \boldsymbol{\rm G}} = \begin{pmatrix} 1 &0 &0 &0 &1 &0 &1\\ 0 &1 &0 &0 &1 &1 &0\\ 0 &0 &1 &0 &0 &1 &1\\ 0 &0 &0 &1 &1 &1 &1 \end{pmatrix}\hspace{0.05cm}.$$
  
Bei der [[Kanalcodierung/Decodierung_linearer_Blockcodes#Prinzip_der_Syndromdecodierung|Syndromdecodierung]] bildet man aus dem Empfangsvektor $\underline{y}$ das Syndrom $\underline{s}$:
+
Bei der [[Kanalcodierung/Decodierung_linearer_Blockcodes#Prinzip_der_Syndromdecodierung|Syndromdecodierung]] bildet man aus dem Empfangsvektor $\underline{y}$ das Syndrom $\underline{s}$ entsprechend der Gleichung
  
 
:$$\underline{s} = \underline{y} \cdot { \boldsymbol{\rm H}}^{\rm T} \in {\rm GF}(2^m) \hspace{0.05cm}.$$
 
:$$\underline{s} = \underline{y} \cdot { \boldsymbol{\rm H}}^{\rm T} \in {\rm GF}(2^m) \hspace{0.05cm}.$$
  
Mit diesem Ergebnis lässt sich beim betrachteten Hamming–Code ein jeder Einzelfehler im Codewort korrigieren. Im fehlerfreien Fall gilt $\underline{s} = \underline{s}_{0} = (0, 0, 0)$. Aber auch bei 3 Übertragungsfehlern kann sich unter Umständen $\underline{s}_{0} = (0, 0, 0)$ ergeben, so dass diese Fehler unerkannt bleiben.
+
Mit diesem Ergebnis lässt sich beim betrachteten Hamming–Code ein jeder Einzelfehler im Codewort korrigieren.  
 +
*Im fehlerfreien Fall gilt $\underline{s} = \underline{s}_{0} = (0, 0, 0)$.  
 +
*Aber auch bei drei Übertragungsfehlern kann sich unter Umständen $\underline{s}_{0} = (0, 0, 0)$ ergeben, so dass diese Fehler unerkannt bleiben.
 +
 
 +
 
 +
 
  
 
''Hinweise:''
 
''Hinweise:''
* Die Aufgabe bezieht sich auf die im Kapitel [[Kanalcodierung/Decodierung_linearer_Blockcodes|Decodierung linearer Blockcodes]] behandelte Thematik.  
+
* Die Aufgabe gehört zum Kapitel [[Kanalcodierung/Decodierung_linearer_Blockcodes|Decodierung linearer Blockcodes]].  
 
* Weitere Informationen zur Syndromdecodierung finden Sie im Angabenblatt zur [[Aufgaben:1.11_Syndromdecodierung|Aufgabe 1.11]].  
 
* Weitere Informationen zur Syndromdecodierung finden Sie im Angabenblatt zur [[Aufgaben:1.11_Syndromdecodierung|Aufgabe 1.11]].  
 
* Die Grafik verdeutlicht die drei Prüfgleichungen entsprechend der Prüfmatrix:
 
* Die Grafik verdeutlicht die drei Prüfgleichungen entsprechend der Prüfmatrix:
Line 31: Line 36:
 
<quiz display=simple>
 
<quiz display=simple>
 
{Handelt es sich um einen systematischen Code?
 
{Handelt es sich um einen systematischen Code?
|type="[]"}
+
|type="()"}
 
+ Ja,
 
+ Ja,
 
- Nein.
 
- Nein.
  
 
{Empfangen wurde $\underline{y} = (1, 0, 0, 1, 0, 1, 0)$. Ist dies ein gültiges Codewort?
 
{Empfangen wurde $\underline{y} = (1, 0, 0, 1, 0, 1, 0)$. Ist dies ein gültiges Codewort?
|type="[]"}
+
|type="()"}
 
+ Ja,
 
+ Ja,
 
- Nein.
 
- Nein.
  
 
{Welches Syndrom ergibt sich mit diesem Empfangswort?
 
{Welches Syndrom ergibt sich mit diesem Empfangswort?
|type="[]"}
+
|type="()"}
 
+ $\underline{s} = \underline{s}_{0} = (0, 0, 0),$
 
+ $\underline{s} = \underline{s}_{0} = (0, 0, 0),$
 
- $\underline{s} = \underline{s}_{3} = (0, 1, 1),$
 
- $\underline{s} = \underline{s}_{3} = (0, 1, 1),$

Revision as of 16:53, 3 January 2018

Schaubild: Prüfgleichungen

Betrachtet wird die gleiche Konstellation wie in der Aufgabe 1.11, nämlich die Decodierung eines $(7, 4, 3)$–Hamming–Codes mit der Prüfmatrix

$${ \boldsymbol{\rm H}}_{\rm } = \begin{pmatrix} 1 &1 &0 &1 &1 &0 &0\\ 0 &1 &1 &1 &0 &1 &0\\ 1 &0 &1 &1 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}.$$

Dementsprechend lautet das Generatorpolynom:

$${ \boldsymbol{\rm G}} = \begin{pmatrix} 1 &0 &0 &0 &1 &0 &1\\ 0 &1 &0 &0 &1 &1 &0\\ 0 &0 &1 &0 &0 &1 &1\\ 0 &0 &0 &1 &1 &1 &1 \end{pmatrix}\hspace{0.05cm}.$$

Bei der Syndromdecodierung bildet man aus dem Empfangsvektor $\underline{y}$ das Syndrom $\underline{s}$ entsprechend der Gleichung

$$\underline{s} = \underline{y} \cdot { \boldsymbol{\rm H}}^{\rm T} \in {\rm GF}(2^m) \hspace{0.05cm}.$$

Mit diesem Ergebnis lässt sich beim betrachteten Hamming–Code ein jeder Einzelfehler im Codewort korrigieren.

  • Im fehlerfreien Fall gilt $\underline{s} = \underline{s}_{0} = (0, 0, 0)$.
  • Aber auch bei drei Übertragungsfehlern kann sich unter Umständen $\underline{s}_{0} = (0, 0, 0)$ ergeben, so dass diese Fehler unerkannt bleiben.



Hinweise:

  • Die Aufgabe gehört zum Kapitel Decodierung linearer Blockcodes.
  • Weitere Informationen zur Syndromdecodierung finden Sie im Angabenblatt zur Aufgabe 1.11.
  • Die Grafik verdeutlicht die drei Prüfgleichungen entsprechend der Prüfmatrix:
    • erste Zeile: rote Gruppierung,
    • zweite Zeile: grüne Gruppierung,
    • dritte Zeile: blaue Gruppierung.



Fragebogen

1

Handelt es sich um einen systematischen Code?

Ja,
Nein.

2

Empfangen wurde $\underline{y} = (1, 0, 0, 1, 0, 1, 0)$. Ist dies ein gültiges Codewort?

Ja,
Nein.

3

Welches Syndrom ergibt sich mit diesem Empfangswort?

$\underline{s} = \underline{s}_{0} = (0, 0, 0),$
$\underline{s} = \underline{s}_{3} = (0, 1, 1),$
$\underline{s} = \underline{s}_{7} = (1, 1, 1).$

4

Welche Empfangsworte führen zum gleichen Syndrom wie in Teilaufgabe (3)?

$\underline{y} = (1, 1, 0, 1, 0, 1, 0),$
$\underline{y} = (0, 1, 0, 1, 0, 0, 1),$
$\underline{y} = (0, 1, 1, 0, 1, 0, 1).$


Musterlösung

(1)  Die Antwort ist JA, wie man aus der vorgegebenen Prüfmatrix $\mathbf{H}$ erkennt. Diese beinhaltet am Ende eine $3×3$–Diagonalmatrix. Die Codeworte lauten demzufolge:

$$ \underline{x} = ( x_1, x_2, x_3, x_4, x_5, x_6, x_7) = ( u_1, u_2, u_3, u_4, p_1, p_2, p_{3}) \hspace{0.05cm}.$$


(2)  Mit diesem Empfangsvektor $y$ werden alle Prüfgleichungen erfüllt:

$$u_1 \oplus u_2 \oplus u_4 \oplus p_1 = 1 \oplus 0 \oplus 1 \oplus 0 = 0 \hspace{0.05cm},$$
$$u_2 \oplus u_3 \oplus u_4 \oplus p_2 = 0 \oplus 0 \oplus 1 \oplus 1 = 0 \hspace{0.05cm},$$
$$u_1 \oplus u_3 \oplus u_4 \oplus p_3 = 1 \oplus 0 \oplus 1 \oplus 0 = 0 \hspace{0.05cm}.$$

Richtig ist dementsprechend die Antwort JA.


(3)  Es gilt $\underline{s} = \underline{y} · \boldsymbol{\rm H}^{\rm T}$:

$$ \underline{s} = \begin{pmatrix} 1 &0 &0 &1 &0 &1 &0 \end{pmatrix} \cdot \begin{pmatrix} 1 &0 &1\\ 1 &1 &0\\ 0 &1 &1\\ 1 &1 &1\\ 1 &0 &0\\ 0 &1 &0\\ 0 &0 &1 \end{pmatrix} = \begin{pmatrix} 0 &0 &0 \end{pmatrix} = \underline{s}_0 \hspace{0.2cm} \Rightarrow\hspace{0.2cm} \hspace{0.15cm} \underline{ \rm Antwort \hspace{0.15cm}1} \hspace{0.05cm}.$$


(4)  Man könnte nun für jedes $\underline{y}$ die Gleichung $\underline{y} · \boldsymbol{\rm H}^{\rm T} = (0, 0, 0)$ überprüfen. Hier soll nun das Ergebnis auf anderem Wege gewonnen werden:

  • $\underline{y}= (1, 1, 0, 1, 0, 1, 0)$ unterscheidet sich von $\underline{y} = (1, 0, 0, 1, 0, 1, 0)$ im Bit $u_{2}$, das nur in den beiden ersten Prüfgleichungen verwendet wird, nicht jedoch in der letzten ⇒ $\underline{s} = \underline{s}_{6} = (1, 1, 0)$.
  • Wendet man die Prüfgleichungen auf $\underline{y} = (0, 1, 0, 1, 0, 0, 1)$ an, so erhält man $\underline{s} = \underline{s}_{0} = (0, 0, 0)$, wie die folgende Rechnung belegt:
$$u_1 \oplus u_2 \oplus u_4 \oplus p_1 = 0 \oplus 1 \oplus 1 \oplus 0 = 0 \hspace{0.05cm},$$
$$u_2 \oplus u_3 \oplus u_4 \oplus p_2 = 1 \oplus 0 \oplus 1 \oplus 0 = 0 \hspace{0.05cm},$$
$$u_1 \oplus u_3 \oplus u_4 \oplus p_3 = 0 \oplus 0 \oplus 1 \oplus 1 = 0 \hspace{0.05cm}.$$
  • Zum gleichen Ergebnis kommt man mit dem Empfangsvektor $\underline{y} = (0, 1, 1, 0, 1, 0, 1),$ der sich vom Vektor $(1, 0, 0, 1, 0, 1, 0)$ in allen 7 Bitpositionen unterscheidet:
$$u_1 \oplus u_2 \oplus u_4 \oplus p_1 = 0 \oplus 1 \oplus 0 \oplus 1 = 0 \hspace{0.05cm},$$
$$u_2 \oplus u_3 \oplus u_4 \oplus p_2 = 1 \oplus 1 \oplus 0 \oplus 0 = 0 \hspace{0.05cm},$$
$$u_1 \oplus u_3 \oplus u_4 \oplus p_3 = 0 \oplus 1 \oplus 0 \oplus 1 = 0 \hspace{0.05cm}.$$

Richtig sind also die Antworten 2 und 3.