Difference between revisions of "Aufgaben:Exercise 1.13Z: Binary Erasure Channel Decoding again"

From LNTwww
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Decodierung linearer Blockcodes}}
+
{{quiz-Header|Buchseite=Channel_Coding/Decoding_of_Linear_Block_Codes}}
  
[[File:P_ID2541__KC_Z_1_13.png|right|frame|Codetabelle des  $\rm HC \ (7, 4, 3)$]]
+
[[File:P_ID2541__KC_Z_1_13.png|right|frame|Code table of the $\rm HC (7, 4, 3)$]]
  
Wir betrachten wieder wie in der  [[Aufgaben:Aufgabe_1.13:_Decodierung_beim_binären_Auslöschungskanal_(BEC)|Aufgabe 1.13]]  die Decodierung eines  [[Channel_Coding/Beispiele_binärer_Blockcodes#Hamming.E2.80.93Codes|Hamming–Codes]]  nach der Übertragung über einen Auslöschungskanal   ⇒   [[Channel_Coding/Kanalmodelle_und_Entscheiderstrukturen#Binary_Erasure_Channel_.E2.80.93_BEC|Binary Erasure Channel]]  (abgekürzt BEC).
+
We consider again as in the  [[Aufgaben:Exercise_1.13:_Binary_Erasure_Channel_Decoding|Task 1. 13]]  the decoding of a  [[Channel_Coding/Examples_of_Binary_Block_Codes#Hamming_Codes|Hamming Codes]]  after transmission over an erasure channel   ⇒   [[Channel_Coding/Channel_Models_and_Decision_Structures#Binary_Erasure_Channel_. E2.80.93_BEC|Binary Erasure Channel]]  (abbreviated BEC).
  
Der  $(7, 4, 3)$–Hamming–Code wird durch die nebenstehende Codetabelle  $\underline{u}_{i} → \underline{x}_{i}$  vollständig beschrieben, anhand derer alle Lösungen gefunden werden können.
+
The  $(7, 4, 3)$-Hamming code is fully described by the adjacent code table  $\underline{u}_{i} → \underline{x}_{i}$  which can be used to find all solutions.
  
  
Line 13: Line 13:
  
  
''Hinweise'' :  
+
Hints:
* Die Aufgabe bezieht sich auf das Kapitel  [[Channel_Coding/Decodierung_linearer_Blockcodes|Decodierung linearer Blockcodes]].
+
* This exercise belongs to the chapter  [[Channel_Coding/Decodierung_linearer_Blockcodes|Decoding of Linear Block Codes]].
* Im Gegensatz zur  [[Aufgaben:Aufgabe_1.13:_Decodierung_beim_binären_Auslöschungskanal_(BEC)|Aufgabe 1.13]]  soll hier die Lösung nicht formal, sondern intuitiv gefunden werden.
+
* In contrast to  [[Aufgaben:Exercise_1.13:_Binary_Erasure_Channel_Decoding|Exercise 1.13]]  here the solution is not to be found formally, but intuitively.
 
   
 
   
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
Wie groß ist die minimale Distanz&nbsp; $\ d_{\rm min}$&nbsp; des vorliegenden Codes?
+
What is the minimum distance&nbsp; $\ d_{\rm min}$&nbsp; of the present code?
 
|type="{}"}
 
|type="{}"}
 
$\ d_{\rm min} \ = \ $ { 3 }
 
$\ d_{\rm min} \ = \ $ { 3 }
  
{Ist der Code systematisch?
+
{Is the code systematic?
 
|type="()"}
 
|type="()"}
+ JA.
+
+ YES.
- NEIN.
+
- NO.
  
{Bis zu wie vielen Auslöschungen ("Erasures"; &nbsp; maximale Anzahl:&nbsp; $e_{\rm max})$&nbsp; ist eine erfolgreiche Decodierung gewährleistet?
+
{Up to how many erasures (maximum number:&nbsp; $e_{\rm max})$&nbsp; is successful decoding guaranteed?
 
|type="{}"}
 
|type="{}"}
 
$\ e_{\rm max} \ = \ $ { 2 }
 
$\ e_{\rm max} \ = \ $ { 2 }
  
{Wie lautet das gesendete Informationswort&nbsp; $\underline{u}$&nbsp; für&nbsp; $\underline{y} = (1, 0, {\rm E}, {\rm E}, 0, 1, 0)$?
+
{What is the sent information word&nbsp; $\underline{u}$&nbsp; for&nbsp; $\underline{y} = (1, 0, {\rm E}, {\rm E}, 0, 1, 0)$?
 
|type="()"}
 
|type="()"}
 
- $\underline{u} = (1, 0, 0, 0),$
 
- $\underline{u} = (1, 0, 0, 0),$
Line 41: Line 41:
 
- $\underline{u} = (1, 0, 1, 1).$
 
- $\underline{u} = (1, 0, 1, 1).$
  
{Welche der nachfolgenden Empfangsworte können decodiert werden?
+
{Which of the following received words can be decoded?
 
|type="[]"}
 
|type="[]"}
 
+ $\underline{y}_{\rm A }= (1, 0, 0, 1, {\rm E}, {\rm E}, {\rm E}),$
 
+ $\underline{y}_{\rm A }= (1, 0, 0, 1, {\rm E}, {\rm E}, {\rm E}),$
Line 50: Line 50:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Betrachtet wird hier der $(7, 4, 3)$–Hamming–Code. Dementsprechend ist die minimale Distanz $d_{\rm min} \ \underline{= 3}$.
+
'''(1)'''&nbsp; The $(7, 4, 3)$ Hamming code is considered here. Accordingly, the minimum distance is $d_{\rm min} \ \underline{= 3}$.
  
  
  
'''(2)'''&nbsp; Die ersten $k = 4$ Bit eines jeden Codewortes $\underline{x}$ stimmen mit dem Informationswort $\underline{u}$ überein. Richtig ist somit <u>JA</u>.
+
'''(2)'''&nbsp; The first $k = 4$ bits of each codeword $\underline{x}$ match the information word $\underline{u}$. Correct is therefore <u>YES</u>.
  
  
  
'''(3)'''&nbsp;  Werden nicht mehr als $e_{\rm max} = d_{\rm min} 1 \underline{ = 2}$ Bit ausgelöscht,so ist eine Decodierung mit Sicherheit möglich.  
+
'''(3)'''&nbsp;  If no more than $e_{\rm max} = d_{\rm min} - 1 \underline{ = 2}$ bits are erased,decoding is possible with certainty.  
*Jedes Codewort unterscheidet sich von jedem anderen in mindestens drei Bitpositionen.  
+
*Each codeword differs from every other in at least three bit positions.  
*Bei nur zwei Auslöschungen kann deshalb das Codewort in jedem Fall rekonstruiert werden.
+
*With only two erasures, therefore, the codeword can be reconstructed in any case.
  
  
  
  
'''(4)'''&nbsp;  In der Codetabelle findet man ein einziges Codewort, das mit „$10$” beginnt und mit „$010$” endet, nämlich $\underline{x} = (1, 0, 0, 1, 0, 1, 0)$.  
+
'''(4)'''&nbsp;  In the code table, one finds a single codeword starting with "$10$" and ending with "$010$", namely $\underline{x} = (1, 0, 0, 1, 0, 1, 0)$.  
Da es sich um einen systematischen Code handelt, beschreiben die ersten $k = 4$ Bit das Informationswort $\underline{u} = (1, 0, 0, 1)$ &nbsp; ⇒&nbsp; <u>Antwort 2</u>.
+
Since this is a systematic code, the first $k = 4$ bits describe the information word $\underline{u} = (1, 0, 0, 1)$ &nbsp; ⇒&nbsp; <u>answer 2</u>.
  
  
  
'''(5)'''&nbsp;  Richtig sind die <u>Lösungsvorschläge 1 und 2</u>.
+
'''(5)'''&nbsp;  Correct are the <u>suggested solutions 1 and 2</u>.
  
* $\underline{y}_{\rm D} = (1, 0, {\rm E},  {\rm E},  {\rm E},  {\rm E}, 0)$&nbsp; kann nicht decodiert werden, da weniger als&nbsp; $k = 4$&nbsp; Bit (Anzahl der Informationsbit) ankommen.
+
* $\underline{y}_{\rm D} = (1, 0, {\rm E},  {\rm E},  {\rm E},  {\rm E}, 0)$&nbsp; cannot be decoded because less than&nbsp; $k = 4$&nbsp; bits (number of information bits) arrive.
  
*Auch &nbsp;$\underline{y}_{\rm C} = ( {\rm E},  {\rm E},  {\rm E}, 1, 0, 1, 0)$&nbsp; kann nicht decodierbar, da&nbsp;  $\underline{x} = (0, 1, 1, 1, 0, 1, 0)$&nbsp; und &nbsp; $\underline{x} = (1, 0, 0, 1, 0, 1, 0)$&nbsp; als mögliches Ergebnis in Frage kommen.
+
*Also &nbsp;$\underline{y}_{\rm C} = ( {\rm E},  {\rm E},  {\rm E}, 1, 0, 1, 0)$&nbsp; is not decodable because&nbsp;  $\underline{x} = (0, 1, 1, 1, 0, 1, 0)$&nbsp; and &nbsp; $\underline{x} = (1, 0, 0, 1, 0, 1, 0)$&nbsp; are possible outcomes.
  
*$\underline{y}_{\rm B} = ( {\rm E},  {\rm E}, 0,  {\rm E}, 0, 1, 0)$&nbsp; ist decodierbar, da von den 16 möglichen Codeworten nur&nbsp; $\underline{x} = (1, 0, 0, 1, 0, 1, 0)$&nbsp; mit&nbsp; $\underline{y}_{\rm B}$&nbsp; in den Positionen 3, 5, 6, 7 übereinstimmt.
+
*$\underline{y}_{\rm B} = ( {\rm E},  {\rm E}, 0,  {\rm E}, 0, 1, 0)$&nbsp; is decodable, since of the 16 possible codewords only&nbsp; $\underline{x} = (1, 0, 0, 1, 0, 1, 0)$&nbsp; matches&nbsp; $\underline{y}_{\rm B}$&nbsp; in positions 3, 5, 6, 7.
  
*$\underline{y}_{\rm A} = (1, 0, 0, 1, {\rm E}, {\rm E}, {\rm E})$ ist decodierbar. Es fehlen nur die $m = 3$ Prüfbit. Damit liegt das Informationswort $\underline{u} = (1, 0, 0, 1)$ ebenfalls fest (systematischer Code).
+
*$\underline{y}_{\rm A} = (1, 0, 0, 1, {\rm E}, {\rm E}, {\rm E})$ is decodable. Only the $m = 3$ parity bits are missing. Thus, the information word $\underline{u} = (1, 0, 0, 1)$ is also fixed (systematic code).
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 23:59, 16 July 2022

Code table of the $\rm HC (7, 4, 3)$

We consider again as in the  Task 1. 13  the decoding of a  Hamming Codes  after transmission over an erasure channel   ⇒   Binary Erasure Channel  (abbreviated BEC).

The  $(7, 4, 3)$-Hamming code is fully described by the adjacent code table  $\underline{u}_{i} → \underline{x}_{i}$  which can be used to find all solutions.




Hints:


Questions

1

What is the minimum distance  $\ d_{\rm min}$  of the present code?

$\ d_{\rm min} \ = \ $

2

Is the code systematic?

YES.
NO.

3

Up to how many erasures (maximum number:  $e_{\rm max})$  is successful decoding guaranteed?

$\ e_{\rm max} \ = \ $

4

What is the sent information word  $\underline{u}$  for  $\underline{y} = (1, 0, {\rm E}, {\rm E}, 0, 1, 0)$?

$\underline{u} = (1, 0, 0, 0),$
$\underline{u}= (1, 0, 0, 1),$
$\underline{u} = (1, 0, 1, 0),$
$\underline{u} = (1, 0, 1, 1).$

5

Which of the following received words can be decoded?

$\underline{y}_{\rm A }= (1, 0, 0, 1, {\rm E}, {\rm E}, {\rm E}),$
$\underline{y}_{\rm B} = ({\rm E}, {\rm E }, 0, {\rm E}, 0, 1, 0),$
$\underline{y}_{\rm C} = ({\rm E}, {\rm E}, {\rm E}, 1, 0, 1, 0),$
$\underline{y}_{\rm D} = (1, 0, {\rm E}, {\rm E}, {\rm E}, {\rm E}, 0).$


Solution

(1)  The $(7, 4, 3)$ Hamming code is considered here. Accordingly, the minimum distance is $d_{\rm min} \ \underline{= 3}$.


(2)  The first $k = 4$ bits of each codeword $\underline{x}$ match the information word $\underline{u}$. Correct is therefore YES.


(3)  If no more than $e_{\rm max} = d_{\rm min} - 1 \underline{ = 2}$ bits are erased,decoding is possible with certainty.

  • Each codeword differs from every other in at least three bit positions.
  • With only two erasures, therefore, the codeword can be reconstructed in any case.



(4)  In the code table, one finds a single codeword starting with "$10$" and ending with "$010$", namely $\underline{x} = (1, 0, 0, 1, 0, 1, 0)$. Since this is a systematic code, the first $k = 4$ bits describe the information word $\underline{u} = (1, 0, 0, 1)$   ⇒  answer 2.


(5)  Correct are the suggested solutions 1 and 2.

  • $\underline{y}_{\rm D} = (1, 0, {\rm E}, {\rm E}, {\rm E}, {\rm E}, 0)$  cannot be decoded because less than  $k = 4$  bits (number of information bits) arrive.
  • Also  $\underline{y}_{\rm C} = ( {\rm E}, {\rm E}, {\rm E}, 1, 0, 1, 0)$  is not decodable because  $\underline{x} = (0, 1, 1, 1, 0, 1, 0)$  and   $\underline{x} = (1, 0, 0, 1, 0, 1, 0)$  are possible outcomes.
  • $\underline{y}_{\rm B} = ( {\rm E}, {\rm E}, 0, {\rm E}, 0, 1, 0)$  is decodable, since of the 16 possible codewords only  $\underline{x} = (1, 0, 0, 1, 0, 1, 0)$  matches  $\underline{y}_{\rm B}$  in positions 3, 5, 6, 7.
  • $\underline{y}_{\rm A} = (1, 0, 0, 1, {\rm E}, {\rm E}, {\rm E})$ is decodable. Only the $m = 3$ parity bits are missing. Thus, the information word $\underline{u} = (1, 0, 0, 1)$ is also fixed (systematic code).