Difference between revisions of "Aufgaben:Exercise 1.13Z: Binary Erasure Channel Decoding again"

From LNTwww
m (Text replacement - "„" to """)
 
(6 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Decodierung linearer Blockcodes}}
+
{{quiz-Header|Buchseite=Channel_Coding/Decoding_of_Linear_Block_Codes}}
  
[[File:P_ID2541__KC_Z_1_13.png|right|frame|Codetabelle des  $\rm HC \ (7, 4, 3)$]]
+
[[File:P_ID2541__KC_Z_1_13.png|right|frame|Code table of the  $\rm HC (7, 4, 3)$]]
  
Wir betrachten wieder wie in der  [[Aufgaben:Aufgabe_1.13:_Decodierung_beim_binären_Auslöschungskanal_(BEC)|Aufgabe 1.13]]  die Decodierung eines  [[Channel_Coding/Beispiele_binärer_Blockcodes#Hamming.E2.80.93Codes|Hamming–Codes]]  nach der Übertragung über einen Auslöschungskanal   ⇒   [[Channel_Coding/Kanalmodelle_und_Entscheiderstrukturen#Binary_Erasure_Channel_.E2.80.93_BEC|Binary Erasure Channel]]  (abgekürzt BEC).
+
We consider as in the  [[Aufgaben:Exercise_1.13:_Binary_Erasure_Channel_Decoding|"Exercise 1. 13"]]  the decoding of a  [[Channel_Coding/Examples_of_Binary_Block_Codes#Hamming_Codes|"Hamming Codes"]]  after transmission over an erasure channel   ⇒   [[Channel_Coding/Channel_Models_and_Decision_Structures#Binary_Erasure_Channel_. E2.80.93_BEC|"Binary Erasure Channel"]]  $\rm (BEC)$.
  
Der  $(7, 4, 3)$–Hamming–Code wird durch die nebenstehende Codetabelle  $\underline{u}_{i} → \underline{x}_{i}$  vollständig beschrieben, anhand derer alle Lösungen gefunden werden können.
+
The  $(7, 4, 3)$-Hamming code is fully described by the adjacent code table  $\underline{u}_{i} → \underline{x}_{i}$  which can be used to find all solutions.
  
  
  
  
 +
Hints:
 +
* This exercise belongs to the chapter  [[Channel_Coding/Decodierung_linearer_Blockcodes|"Decoding of Linear Block Codes"]].
  
 
+
* In contrast to  [[Aufgaben:Exercise_1.13:_Binary_Erasure_Channel_Decoding|"Exercise 1.13"]]  the solution is here not to be found formally, but intuitively.
 
 
''Hinweise'' :
 
* Die Aufgabe bezieht sich auf das Kapitel  [[Channel_Coding/Decodierung_linearer_Blockcodes|Decodierung linearer Blockcodes]].
 
* Im Gegensatz zur  [[Aufgaben:Aufgabe_1.13:_Decodierung_beim_binären_Auslöschungskanal_(BEC)|Aufgabe 1.13]]  soll hier die Lösung nicht formal, sondern intuitiv gefunden werden.
 
 
   
 
   
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
Wie groß ist die minimale Distanz&nbsp; $\ d_{\rm min}$&nbsp; des vorliegenden Codes?
+
What is the minimum distance&nbsp; $\ d_{\rm min}$&nbsp; of the present code?
 
|type="{}"}
 
|type="{}"}
 
$\ d_{\rm min} \ = \ $ { 3 }
 
$\ d_{\rm min} \ = \ $ { 3 }
  
{Ist der Code systematisch?
+
{Is the code systematic?
 
|type="()"}
 
|type="()"}
+ JA.
+
+ YES.
- NEIN.
+
- NO.
  
{Bis zu wie vielen Auslöschungen ("Erasures"; &nbsp; maximale Anzahl:&nbsp; $e_{\rm max})$&nbsp; ist eine erfolgreiche Decodierung gewährleistet?
+
{Up to how many erasures&nbsp; $($maximum number:&nbsp; $e_{\rm max})$&nbsp; is successful decoding guaranteed?
 
|type="{}"}
 
|type="{}"}
 
$\ e_{\rm max} \ = \ $ { 2 }
 
$\ e_{\rm max} \ = \ $ { 2 }
  
{Wie lautet das gesendete Informationswort&nbsp; $\underline{u}$&nbsp; für&nbsp; $\underline{y} = (1, 0, {\rm E}, {\rm E}, 0, 1, 0)$?
+
{The received word is&nbsp; $\underline{y} = (1, 0, {\rm E}, {\rm E}, 0, 1, 0)$.&nbsp; What is the sent information word&nbsp; $\underline{u}$?
 
|type="()"}
 
|type="()"}
 
- $\underline{u} = (1, 0, 0, 0),$
 
- $\underline{u} = (1, 0, 0, 0),$
+ $\underline{u}= (1, 0, 0, 1),$
+
+ $\underline{u} = (1, 0, 0, 1),$
 
- $\underline{u} = (1, 0, 1, 0),$
 
- $\underline{u} = (1, 0, 1, 0),$
 
- $\underline{u} = (1, 0, 1, 1).$
 
- $\underline{u} = (1, 0, 1, 1).$
  
{Welche der nachfolgenden Empfangsworte können decodiert werden?
+
{Which of the following received words can be decoded?
 
|type="[]"}
 
|type="[]"}
 
+ $\underline{y}_{\rm A }= (1, 0, 0, 1, {\rm E}, {\rm E}, {\rm E}),$
 
+ $\underline{y}_{\rm A }= (1, 0, 0, 1, {\rm E}, {\rm E}, {\rm E}),$
Line 50: Line 48:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Betrachtet wird hier der $(7, 4, 3)$–Hamming–Code. Dementsprechend ist die minimale Distanz $d_{\rm min} \ \underline{= 3}$.
+
'''(1)'''&nbsp; The&nbsp; $(7, 4, 3)$&nbsp; Hamming code is considered here.&nbsp; Accordingly,&nbsp; the minimum distance is&nbsp; $d_{\rm min} \ \underline{= 3}$.
  
  
 
+
'''(2)'''&nbsp; The first&nbsp; $k = 4$&nbsp; bits of each code word&nbsp; $\underline{x}$&nbsp; match the information word&nbsp; $\underline{u}$.&nbsp; Correct is therefore&nbsp; <u>YES</u>.
'''(2)'''&nbsp; Die ersten $k = 4$ Bit eines jeden Codewortes $\underline{x}$ stimmen mit dem Informationswort $\underline{u}$ überein. Richtig ist somit <u>JA</u>.
 
  
  
 +
'''(3)'''&nbsp;  If no more than&nbsp; $e_{\rm max} = d_{\rm min}- 1 \ \ \underline{ = 2}$&nbsp; bits are erased,&nbsp; decoding is possible with certainty.
 +
*Each code word differs from every other in at least three bit positions.
 +
 +
*With only two erasures,&nbsp; therefore,&nbsp; the code word can be reconstructed in any case.
  
'''(3)'''&nbsp;  Werden nicht mehr als $e_{\rm max} = d_{\rm min} – 1 \underline{ = 2}$ Bit ausgelöscht,so ist eine Decodierung mit Sicherheit möglich.
 
*Jedes Codewort unterscheidet sich von jedem anderen in mindestens drei Bitpositionen.
 
*Bei nur zwei Auslöschungen kann deshalb das Codewort in jedem Fall rekonstruiert werden.
 
  
  
  
 +
'''(4)'''&nbsp;  In the code table,&nbsp; one finds a single code word starting with&nbsp; "$10$"&nbsp; and ending with&nbsp; "$010$",&nbsp; namely $\underline{x} = (1, 0, 0, 1, 0, 1, 0)$.&nbsp;
  
'''(4)'''&nbsp; In der Codetabelle findet man ein einziges Codewort, das mit „$10$” beginnt und mit „$010$” endet, nämlich $\underline{x} = (1, 0, 0, 1, 0, 1, 0)$.
+
*Since this is a systematic code,&nbsp; the first&nbsp; $k = 4$&nbsp; bits describe the information word&nbsp; $\underline{u} = (1, 0, 0, 1)$ &nbsp; ⇒&nbsp; <u>answer 2</u>.
Da es sich um einen systematischen Code handelt, beschreiben die ersten $k = 4$ Bit das Informationswort $\underline{u} = (1, 0, 0, 1)$ &nbsp; ⇒&nbsp; <u>Antwort 2</u>.
 
  
  
  
'''(5)'''&nbsp;  Richtig sind die <u>Lösungsvorschläge 1 und 2</u>.
+
'''(5)'''&nbsp;  Correct are the&nbsp; <u>suggested solutions 1 and 2</u>.
  
* $\underline{y}_{\rm D} = (1, 0, {\rm E},  {\rm E},  {\rm E},  {\rm E}, 0)$&nbsp; kann nicht decodiert werden, da weniger als&nbsp; $k = 4$&nbsp; Bit (Anzahl der Informationsbit) ankommen.
+
* $\underline{y}_{\rm D} = (1, 0, {\rm E},  {\rm E},  {\rm E},  {\rm E}, 0)$&nbsp; cannot be decoded because less than&nbsp; $k = 4$&nbsp; bits&nbsp; (number of information bits)&nbsp; arrive.
  
*Auch &nbsp;$\underline{y}_{\rm C} = ( {\rm E},  {\rm E},  {\rm E}, 1, 0, 1, 0)$&nbsp; kann nicht decodierbar, da&nbsp;  $\underline{x} = (0, 1, 1, 1, 0, 1, 0)$&nbsp; und &nbsp; $\underline{x} = (1, 0, 0, 1, 0, 1, 0)$&nbsp; als mögliches Ergebnis in Frage kommen.
+
*$\underline{y}_{\rm C} = ( {\rm E},  {\rm E},  {\rm E}, 1, 0, 1, 0)$&nbsp; is not decodable because&nbsp;  $\underline{x} = (0, 1, 1, 1, 0, 1, 0)$&nbsp; and &nbsp; $\underline{x} = (1, 0, 0, 1, 0, 1, 0)$&nbsp; are possible outcomes.
  
*$\underline{y}_{\rm B} = ( {\rm E},  {\rm E}, 0,  {\rm E}, 0, 1, 0)$&nbsp; ist decodierbar, da von den 16 möglichen Codeworten nur&nbsp; $\underline{x} = (1, 0, 0, 1, 0, 1, 0)$&nbsp; mit&nbsp; $\underline{y}_{\rm B}$&nbsp; in den Positionen 3, 5, 6, 7 übereinstimmt.
+
*$\underline{y}_{\rm B} = ( {\rm E},  {\rm E}, 0,  {\rm E}, 0, 1, 0)$&nbsp; is decodable,&nbsp; since of the 16 possible code words only&nbsp; $\underline{x} = (1, 0, 0, 1, 0, 1, 0)$&nbsp; matches&nbsp; $\underline{y}_{\rm B}$&nbsp; in positions 3, 5, 6, 7.
  
*$\underline{y}_{\rm A} = (1, 0, 0, 1, {\rm E}, {\rm E}, {\rm E})$ ist decodierbar. Es fehlen nur die $m = 3$ Prüfbit. Damit liegt das Informationswort $\underline{u} = (1, 0, 0, 1)$ ebenfalls fest (systematischer Code).
+
*$\underline{y}_{\rm A} = (1, 0, 0, 1, {\rm E}, {\rm E}, {\rm E})$&nbsp; is decodable.&nbsp; Only the&nbsp; $m = 3$&nbsp; parity bits are missing.&nbsp; Thus,&nbsp; the information word&nbsp; $\underline{u} = (1, 0, 0, 1)$&nbsp; is also fixed&nbsp; (systematic code).
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Channel Coding: Exercises|^1.5 Decodierung linearer Blockcodes
+
[[Category:Channel Coding: Exercises|^1.5 Linear Block Code Decoding
  
  
 
^]]
 
^]]

Latest revision as of 19:00, 1 November 2022

Code table of the  $\rm HC (7, 4, 3)$

We consider as in the  "Exercise 1. 13"  the decoding of a  "Hamming Codes"  after transmission over an erasure channel   ⇒   "Binary Erasure Channel"  $\rm (BEC)$.

The  $(7, 4, 3)$-Hamming code is fully described by the adjacent code table  $\underline{u}_{i} → \underline{x}_{i}$  which can be used to find all solutions.



Hints:

  • In contrast to  "Exercise 1.13"  the solution is here not to be found formally, but intuitively.


Questions

1

What is the minimum distance  $\ d_{\rm min}$  of the present code?

$\ d_{\rm min} \ = \ $

2

Is the code systematic?

YES.
NO.

3

Up to how many erasures  $($maximum number:  $e_{\rm max})$  is successful decoding guaranteed?

$\ e_{\rm max} \ = \ $

4

The received word is  $\underline{y} = (1, 0, {\rm E}, {\rm E}, 0, 1, 0)$.  What is the sent information word  $\underline{u}$?

$\underline{u} = (1, 0, 0, 0),$
$\underline{u} = (1, 0, 0, 1),$
$\underline{u} = (1, 0, 1, 0),$
$\underline{u} = (1, 0, 1, 1).$

5

Which of the following received words can be decoded?

$\underline{y}_{\rm A }= (1, 0, 0, 1, {\rm E}, {\rm E}, {\rm E}),$
$\underline{y}_{\rm B} = ({\rm E}, {\rm E }, 0, {\rm E}, 0, 1, 0),$
$\underline{y}_{\rm C} = ({\rm E}, {\rm E}, {\rm E}, 1, 0, 1, 0),$
$\underline{y}_{\rm D} = (1, 0, {\rm E}, {\rm E}, {\rm E}, {\rm E}, 0).$


Solution

(1)  The  $(7, 4, 3)$  Hamming code is considered here.  Accordingly,  the minimum distance is  $d_{\rm min} \ \underline{= 3}$.


(2)  The first  $k = 4$  bits of each code word  $\underline{x}$  match the information word  $\underline{u}$.  Correct is therefore  YES.


(3)  If no more than  $e_{\rm max} = d_{\rm min}- 1 \ \ \underline{ = 2}$  bits are erased,  decoding is possible with certainty.

  • Each code word differs from every other in at least three bit positions.
  • With only two erasures,  therefore,  the code word can be reconstructed in any case.



(4)  In the code table,  one finds a single code word starting with  "$10$"  and ending with  "$010$",  namely $\underline{x} = (1, 0, 0, 1, 0, 1, 0)$. 

  • Since this is a systematic code,  the first  $k = 4$  bits describe the information word  $\underline{u} = (1, 0, 0, 1)$   ⇒  answer 2.


(5)  Correct are the  suggested solutions 1 and 2.

  • $\underline{y}_{\rm D} = (1, 0, {\rm E}, {\rm E}, {\rm E}, {\rm E}, 0)$  cannot be decoded because less than  $k = 4$  bits  (number of information bits)  arrive.
  • $\underline{y}_{\rm C} = ( {\rm E}, {\rm E}, {\rm E}, 1, 0, 1, 0)$  is not decodable because  $\underline{x} = (0, 1, 1, 1, 0, 1, 0)$  and   $\underline{x} = (1, 0, 0, 1, 0, 1, 0)$  are possible outcomes.
  • $\underline{y}_{\rm B} = ( {\rm E}, {\rm E}, 0, {\rm E}, 0, 1, 0)$  is decodable,  since of the 16 possible code words only  $\underline{x} = (1, 0, 0, 1, 0, 1, 0)$  matches  $\underline{y}_{\rm B}$  in positions 3, 5, 6, 7.
  • $\underline{y}_{\rm A} = (1, 0, 0, 1, {\rm E}, {\rm E}, {\rm E})$  is decodable.  Only the  $m = 3$  parity bits are missing.  Thus,  the information word  $\underline{u} = (1, 0, 0, 1)$  is also fixed  (systematic code).