Difference between revisions of "Aufgaben:Exercise 1.15: Distance Spectra of HC (7, 4, 3) and HC (8, 4, 4)"

From LNTwww
 
(38 intermediate revisions by 7 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Schranken für die Blockfehlerwahrscheinlichkeit
+
{{quiz-Header|Buchseite=Channel_Coding/Limits_for_Block_Error_Probability}}
  
 +
[[File:EN_KC_A_1_9_neu.png|right|frame|Code tables of the  $(7, 4, 3)$ Hamming code and the  $(8, 4, 4)$ extension]]
  
 +
We consider as in the  [[Aufgaben:Exercise_1.09:_Extended_Hamming_Code|"Exercise 1.9"]]
 +
*the  $(7, 4, 3)$  Hamming code and
  
}}
+
*the extended  $(8, 4, 4)$  Hamming code.
  
[[File:P_ID2407__KC_A_1_9.png|right|frame|Codetabellen des (7, 4)–Hamming–Codes und der (8, 4)–Erweiterung]]
 
  
Wir betrachten wie in [[Aufgaben:1.09_Erweiterter_Hamming–Code|Aufgabe 1.9]]
+
The graphic shows the corresponding code tables.  In  [[Aufgaben:Exercise_1.12:_Hard_Decision_vs._Soft_Decision|"Exercise 1.12"]],  the syndrome decoding of these two codes has already been covered.  In this exercise,  the differences regarding the distance spectrum  $\{W_{i}\}$  shall now be worked out.  For the indexing variable  $i = 0, \ \text{...} \ , n$:
*den (7, 4, 3)–Hamming–Code und
 
*den erweiterten (8, 4, 4)–Hamming–Code.
 
  
Die Grafik zeigt die zugehörigen Codetabellen. In der [[Aufgaben:1.12_Hard_/_Soft_Decision|Aufgabe 1.12]] wurde schon die Syndromdecodierung dieser beiden Codes behandelt.
+
*The integer  $W_{i}$  specifies the number of code words  $\underline{x}$  with the  [[Channel_Coding/Objective_of_Channel_Coding#Important_definitions_for_block_coding|"Hamming weight"]]  $\underline{w}_{\rm H}( \underline{x} ) = i$.
In dieser Aufgabe sollen die Unterschiede hinsichtlich des Distanzspektrums {$W_{i}$} herausgearbeitet werden. Für die Laufvariable gilt $i = 0, ... , n:$
 
  
*Die Integerzahl $W_{i}$ gibt die Zahl der Codeworte <u>''x''</u> mit dem [[Kanalcodierung/Zielsetzung_der_Kanalcodierung#Einige_wichtige_Definitionen_zur_Blockcodierung|Hamming–Gewicht]] $\underline{w_{\rm H}(x)} = i$ an.
+
*For the linear code considered here,&nbsp; $W_{i}$&nbsp; simultaneously describes the number of code words with the&nbsp; [[Channel_Coding/Limits_for_Block_Error_Probability#Distance_spectrum_of_a_linear_code|"Hamming distance"]]&nbsp; $i$&nbsp; from the all-zero word.
*Bei den hier betrachteten linearen Code bescheibt $W_{i}$ gleichzeitig die Anzahl der Codeworte mit der [[Kanalcodierung/Schranken_für_die_Blockfehlerwahrscheinlichkeit#Distanzspektrum_eines_linearen_Codes|Hamming–Distanz]] ''i'' vom Nullwort.
 
*Häufig weist man der Zahlenmenge {$W_{i}$} einer Pseudo–Funktion zu, die man [[Kanalcodierung/Schranken_für_die_Blockfehlerwahrscheinlichkeit#Distanzspektrum_eines_linearen_Codes|Gewichtsfunktion]] (englisch: ''Weight Enumerator Function'', WEF) nennt:
 
  
 +
*Often one assigns to the number set&nbsp; $\{W_i\}$&nbsp; a pseudo-function called&nbsp; [[Channel_Coding/Limits_for_Block_Error_Probability#Distance_spectrum_of_a_linear_code|"weight enumerator function"]]&nbsp;:
 
:$$\left \{ \hspace{0.05cm} W_i \hspace{0.05cm} \right \} \hspace{0.3cm} \Leftrightarrow \hspace{0.3cm} W(X) = \sum_{i=0 }^{n} W_i \cdot X^{i} = W_0 + W_1 \cdot X + W_2 \cdot X^{2} + ... \hspace{0.05cm} + W_n \cdot X^{n}\hspace{0.05cm}.$$
 
:$$\left \{ \hspace{0.05cm} W_i \hspace{0.05cm} \right \} \hspace{0.3cm} \Leftrightarrow \hspace{0.3cm} W(X) = \sum_{i=0 }^{n} W_i \cdot X^{i} = W_0 + W_1 \cdot X + W_2 \cdot X^{2} + ... \hspace{0.05cm} + W_n \cdot X^{n}\hspace{0.05cm}.$$
 
   
 
   
Bhattacharyya hat die Pseudo–Funktion ''W(X;)'' verwendet, um eine kanalunabhängige (obere) Schranke für die Blockfehlerwahrscheinlichkeit anzugeben:
+
Bhattacharyya has used the pseudo-function&nbsp; $W(X)$&nbsp; to specify a channel-independent&nbsp; (upper)&nbsp; bound on the block error probability:
 
   
 
   
:$${\rm Pr(Blockfehler)} \le{\rm Pr(Bhattacharyya)} = W(\beta) -1 \hspace{0.05cm}.$$
+
:$${\rm Pr(block\:error)} \le{\rm Pr(Bhattacharyya)} = W(\beta) -1 \hspace{0.05cm}.$$
  
Der so genannte ''Bhattacharyya–Parameter'' ist dabei wie folgt gegeben:
+
The so-called&nbsp; "Bhattacharyya parameter"&nbsp; is given as follows:
 +
 
 +
:$$\beta = \left\{ \begin{array}{c} \lambda \\ \\ 2 \cdot \sqrt{\varepsilon \cdot (1- \varepsilon)}\\ \\ {\rm e}^{- R \hspace{0.05cm}\cdot \hspace{0.05cm}E_{\rm B}/N_0} \end{array} \right.\quad \begin{array}{*{1}c} {\rm for\hspace{0.15cm} the \hspace{0.15cm}BEC\:model},\\ \\ {\rm for\hspace{0.15cm} the \hspace{0.15cm}BSC\:model}, \\ \\{\rm for\hspace{0.15cm} the \hspace{0.15cm}AWGN\:model}. \end{array}$$
 +
 
 +
It should be noted that the&nbsp; "Bhattacharyya Bound"&nbsp; is generally very pessimistic.&nbsp; The actual block error probability is often significantly lower.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 +
Hints:
 +
*This exercise refers to the chapter&nbsp; [[Channel_Coding/Limits_for_Block_Error_Probability|"Bounds for Block Error Probability"]].
 +
 
 +
*A similar topic is covered in&nbsp; [[Aufgaben:Exercise_1.14:_Bhattacharyya_Bound_for_BEC|"Exercise 1.14"]]&nbsp; and in&nbsp; [[Aufgaben:Exercise_1.16:_Block_Error_Probability_Bounds_for_AWGN|"Exercise 1.16"]].
 +
 +
* The channels to be considered are:
 +
** the&nbsp; [[Channel_Coding/Channel_Models_and_Decision_Structures#Binary_Symmetric_Channel_.E2.80.93_BSC|"BSC model"]]&nbsp; ("Binary Symmetric Channel"),
 +
** the&nbsp; [[Channel_Coding/Channel_Models_and_Decision_Structures#Binary_Erasure_Channel_.E2.80.93_BEC|"BEC model"]]&nbsp; ("Binary Erasure Channel"),
 +
** the&nbsp; [[Channel_Coding/Channel_Models_and_Decision_Structures#AWGN_channel_at_Binary_Input|"AWGN channel model"]].
  
:$$\beta = \left\{ \begin{array}{c} \lambda \\ \\ 2 \cdot \sqrt{\varepsilon \cdot (1- \varepsilon)}\\ \\ {\rm exp}[- R \cdot E_{\rm B}/N_0] \end{array} \right.\quad \begin{array}{*{1}c} {\rm f\ddot{u}r\hspace{0.15cm} das \hspace{0.15cm}BEC-Modell},\\ \\ {\rm f\ddot{u}r\hspace{0.15cm} das \hspace{0.15cm}BSC-Modell}, \\ \\{\rm f\ddot{u}r\hspace{0.15cm} das \hspace{0.15cm}AWGN-Modell}. \end{array}$$
 
 
   
 
   
''Hinweis:''
 
Die Aufgabe bezieht sich auf Kapitel [[Kanalcodierung/Schranken_für_die_Blockfehlerwahrscheinlichkeit|Schranken für die Blockfehlerwahrscheinlichkeit]], ebenso wie [[Aufgaben:1.14_Bhattacharyya–Schranke_für_BEC|Aufgabe 1.14]] und [[Aufgaben:1.16_Schranken_für_AWGN|Aufgabe 1.16]]. Als Kanäle sollen betrachtet werden:
 
*das [[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#Binary_Symmetric_Channel_.E2.80.93_BSC|BSC–Modell]] (''Binary Symmetric Channel''),
 
*das [[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#Binary_Erasure_Channel_.E2.80.93_BEC|BEC–Modell]] (''Binary Erasure Channel''),
 
*das [[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#AWGN.E2.80.93Kanal_bei_bin.C3.A4rem_Eingang|AWGN–Kanalmodell]].
 
  
Anzumerken ist, dass die Bhattacharyya–Schranke im allgemeinen sehr pessimistisch ist. Die tatsächliche Blockfehlerwahrscheinlichkeit liegt oft deutlich darunter.
 
  
===Fragebogen===
 
  
 +
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{Specify the distance spectrum of the&nbsp; $(7, 4, 3)$ Hamming code.
|type="[]"}
+
|type="{}"}
- Falsch
+
$W_{0} \ = \ ${ 1 }
+ Richtig
+
$W_{3} \  = \ ${ 7 }
 +
$W_{4} \ = \ ${ 7 }
 +
$W_{7} \ = \ ${ 1 }
  
 +
{What is the Bhattacharyya Bound for the&nbsp; $(7, 4, 3)$&nbsp; Hamming code and the BSC model with&nbsp; $\varepsilon = 0.01$?
 +
|type="{}"}
 +
${\rm Pr(Bhattacharyya)} \ = \ $ { 6.6 3% } $\ \%$
  
{Input-Box Frage
+
{Given the same channel,&nbsp; what is the bound of the extended&nbsp; $(8, 4, 4)$&nbsp; Hamming code?
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
${\rm Pr(Bhattacharyya)} \ = \ ${ 2.2 3% } $\ \%$
  
 +
{With which BEC parameter&nbsp; $\lambda$&nbsp; do you get the exact same barriers?
 +
|type="{}"}
 +
$\lambda \ = \ $ { 0.199 3% }
  
 +
{We continue to consider the extended&nbsp; $(8, 4, 4)$&nbsp; Hamming code,&nbsp; but now the AWGN model.
 +
<br>Determine&nbsp; $E_{\rm B} / N_{0}$&nbsp; (in dB)&nbsp; such that the same Bhattacharyya Bound results.
 +
|type="{}"}
 +
$10 · \lg {E_{\rm B}/N_0} \ = \ $ { 5 3% }$ \ \rm dB$
  
 +
{Now determine the AWGN parameter&nbsp; $(10 · \lg {E_{\rm B}/N_0})$&nbsp; for the&nbsp; $(7, 4, 3)$&nbsp; Hamming code.
 +
|type="{}"}
 +
$10 · \lg {E_{\rm B}/N_0} \ = \ $ { 4.417 3% }$ \ \rm dB$
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''(1)'''&nbsp; By analyzing all the code words of the&nbsp; $(7, 4, 3)$&nbsp; Hamming code,&nbsp; we see that.
'''2.'''
+
 
'''3.'''
+
*$W_{0} \ \underline{ = \ 1}$ &nbsp; &rArr; &nbsp; code word does not contain a&nbsp; "one"&nbsp; (the zero-word),
'''4.'''
+
*$W_{3} \ \underline{ = \ 7}$ &nbsp; &rArr; &nbsp; cod words contain three&nbsp; "ones",
'''5.'''
+
*$W_{4} \ \underline{ = \ 7}$ &nbsp; &rArr; &nbsp; code words contain four&nbsp; "ones",
'''6.'''
+
*$W_{7} \ \underline{ = \ 1}$ &nbsp; &rArr; &nbsp; code word consists of only&nbsp; "ones.
'''7.'''
+
 
{{ML-Fuß}}
+
 
 +
$W_{i}$&nbsp; simultaneously specifies the number of code words that differ from the zero-word in&nbsp; $i \ \rm bit$.
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; The Bhattacharyya bound reads:
 +
 +
:$${\rm Pr(block\:error)} \le{\rm Pr(Bhattacharyya)} = W(\beta) -1 \hspace{0.05cm}.$$
 +
 
 +
*The weight function is defined by the subtask&nbsp; '''(1)''':
 +
 
 +
:$$W(X) = 1+ 7 \cdot X^{3} + 7 \cdot X^{4} + X^{7}\hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm} {\rm Pr(Bhattacharyya)} = 7 \cdot \beta^{3} + 7 \cdot \beta^{4} + \beta^{7} \hspace{0.05cm}.$$
 +
 
 +
*For the Bhattacharyya parameter of the BSC model:
 +
 
 +
:$$\beta = 2 \cdot \sqrt{\varepsilon \cdot (1- \varepsilon)} = 2 \cdot \sqrt{0.01 \cdot 0.99} = 0.199\hspace{0.3cm}
 +
  \Rightarrow \hspace{0.3cm} {\rm Pr(Bhattacharyya)} = 7 \cdot 0.199^{3} + 7 \cdot 0.199^{4} + 0.199^{7} \hspace{0.15cm} \underline{ \approx 6.6\%} \hspace{0.05cm}.$$
 +
 
 +
*A comparison with the actual block error probability as calculated in&nbsp; [[Aufgaben:Exercise_1.12:_Hard_Decision_vs._Soft_Decision|"Exercise 1.12"]],
 +
 
 +
:$${\rm Pr(block\:error)} \approx 21 \cdot \varepsilon^2 = 2.1 \cdot 10^{-3} \hspace{0.05cm},$$
 +
 
 +
:shows that Bhattacharyya provides only a rough bound.&nbsp; In the present case,&nbsp; this bound is more than a factor of&nbsp; $30$&nbsp; higher than the actual value.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; From the code table of the extended&nbsp; $(8, 4, 4)$&nbsp; Hamming code,&nbsp; the following results are obtained:
 +
 
 +
:$$W(X) = 1+ 14 \cdot X^{4} + X^{8}\hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm} {\rm Pr(Bhattacharyya)} = 14 \cdot \beta^{4} + \beta^{8} = 14 \cdot 0.199^{4} + 0.199^{8} \hspace{0.15cm} \underline{ \approx 2.2\%} \hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; The equation for the Bhattacharyya parameter is:
 +
 
 +
:$$\beta = \left\{ \begin{array}{c} \lambda \\ \\ 2 \cdot \sqrt{ \varepsilon \cdot (1- \varepsilon)}\\ \\ {\rm e}^{- R \cdot E_{\rm B}/N_0} \end{array} \right.\quad \begin{array}{*{1}c} {\rm for\hspace{0.15cm} the \hspace{0.15cm}BEC model},\\ \\ {\rm for\hspace{0.15cm} the \hspace{0.15cm}BSC model}, \\ \\{\rm for\hspace{0.15cm} the \hspace{0.15cm}AWGN model}. \end{array}$$
 +
 
 +
With the BEC model,&nbsp; exactly the same bound is obtained when the erasure probability is&nbsp; $\lambda = \beta \ \underline{= 0.199}$.
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; According to the above equation must apply:
 +
 +
:$$\beta = {\rm e}^{- R \hspace{0.05cm}\cdot \hspace{0.05cm} E_{\rm B}/N_0} = 0.199 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} R \cdot E_{\rm B}/N_0 = 10^{0.199} = 1.58 \hspace{0.05cm}.$$
 +
 
 +
*The code rate of the extended&nbsp; $(8, 4, 4)$&nbsp; Hamming code is&nbsp; $R = 0.5$:
 +
 
 +
:$$E_{\rm B}/N_0 = 3.16 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 \hspace{0.15cm} \underline{\approx 5\,{\rm dB}} \hspace{0.05cm}.$$
 +
 
 +
 
  
 +
'''(6)'''&nbsp; Using the code rate&nbsp; $R = 4/7$&nbsp; of the&nbsp; $(7, 4, 3)$&nbsp; Hamming code,&nbsp; we obtain:
  
 +
:$$E_{\rm B}/N_0 = 7/4 \cdot 1.58 = 2.765 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 \hspace{0.15cm} \underline{\approx 4.417\,{\rm dB}} \hspace{0.05cm}.$$
 +
{{ML-Fuß}}
  
[[Category:Aufgaben zu  Kanalcodierung|^1.6 Schranken für die Blockfehlerwahrscheinlichkeit
 
  
  
^]]
+
[[Category:Channel Coding: Exercises|^1.6 Error Probability Bounds^]]

Latest revision as of 16:14, 8 October 2022

Code tables of the  $(7, 4, 3)$ Hamming code and the  $(8, 4, 4)$ extension

We consider as in the  "Exercise 1.9"

  • the  $(7, 4, 3)$  Hamming code and
  • the extended  $(8, 4, 4)$  Hamming code.


The graphic shows the corresponding code tables.  In  "Exercise 1.12",  the syndrome decoding of these two codes has already been covered.  In this exercise,  the differences regarding the distance spectrum  $\{W_{i}\}$  shall now be worked out.  For the indexing variable  $i = 0, \ \text{...} \ , n$:

  • The integer  $W_{i}$  specifies the number of code words  $\underline{x}$  with the  "Hamming weight"  $\underline{w}_{\rm H}( \underline{x} ) = i$.
  • For the linear code considered here,  $W_{i}$  simultaneously describes the number of code words with the  "Hamming distance"  $i$  from the all-zero word.
$$\left \{ \hspace{0.05cm} W_i \hspace{0.05cm} \right \} \hspace{0.3cm} \Leftrightarrow \hspace{0.3cm} W(X) = \sum_{i=0 }^{n} W_i \cdot X^{i} = W_0 + W_1 \cdot X + W_2 \cdot X^{2} + ... \hspace{0.05cm} + W_n \cdot X^{n}\hspace{0.05cm}.$$

Bhattacharyya has used the pseudo-function  $W(X)$  to specify a channel-independent  (upper)  bound on the block error probability:

$${\rm Pr(block\:error)} \le{\rm Pr(Bhattacharyya)} = W(\beta) -1 \hspace{0.05cm}.$$

The so-called  "Bhattacharyya parameter"  is given as follows:

$$\beta = \left\{ \begin{array}{c} \lambda \\ \\ 2 \cdot \sqrt{\varepsilon \cdot (1- \varepsilon)}\\ \\ {\rm e}^{- R \hspace{0.05cm}\cdot \hspace{0.05cm}E_{\rm B}/N_0} \end{array} \right.\quad \begin{array}{*{1}c} {\rm for\hspace{0.15cm} the \hspace{0.15cm}BEC\:model},\\ \\ {\rm for\hspace{0.15cm} the \hspace{0.15cm}BSC\:model}, \\ \\{\rm for\hspace{0.15cm} the \hspace{0.15cm}AWGN\:model}. \end{array}$$

It should be noted that the  "Bhattacharyya Bound"  is generally very pessimistic.  The actual block error probability is often significantly lower.




Hints:




Questions

1

Specify the distance spectrum of the  $(7, 4, 3)$ Hamming code.

$W_{0} \ = \ $

$W_{3} \ = \ $

$W_{4} \ = \ $

$W_{7} \ = \ $

2

What is the Bhattacharyya Bound for the  $(7, 4, 3)$  Hamming code and the BSC model with  $\varepsilon = 0.01$?

${\rm Pr(Bhattacharyya)} \ = \ $

$\ \%$

3

Given the same channel,  what is the bound of the extended  $(8, 4, 4)$  Hamming code?

${\rm Pr(Bhattacharyya)} \ = \ $

$\ \%$

4

With which BEC parameter  $\lambda$  do you get the exact same barriers?

$\lambda \ = \ $

5

We continue to consider the extended  $(8, 4, 4)$  Hamming code,  but now the AWGN model.
Determine  $E_{\rm B} / N_{0}$  (in dB)  such that the same Bhattacharyya Bound results.

$10 · \lg {E_{\rm B}/N_0} \ = \ $

$ \ \rm dB$

6

Now determine the AWGN parameter  $(10 · \lg {E_{\rm B}/N_0})$  for the  $(7, 4, 3)$  Hamming code.

$10 · \lg {E_{\rm B}/N_0} \ = \ $

$ \ \rm dB$


Solution

(1)  By analyzing all the code words of the  $(7, 4, 3)$  Hamming code,  we see that.

  • $W_{0} \ \underline{ = \ 1}$   ⇒   code word does not contain a  "one"  (the zero-word),
  • $W_{3} \ \underline{ = \ 7}$   ⇒   cod words contain three  "ones",
  • $W_{4} \ \underline{ = \ 7}$   ⇒   code words contain four  "ones",
  • $W_{7} \ \underline{ = \ 1}$   ⇒   code word consists of only  "ones.


$W_{i}$  simultaneously specifies the number of code words that differ from the zero-word in  $i \ \rm bit$.


(2)  The Bhattacharyya bound reads:

$${\rm Pr(block\:error)} \le{\rm Pr(Bhattacharyya)} = W(\beta) -1 \hspace{0.05cm}.$$
  • The weight function is defined by the subtask  (1):
$$W(X) = 1+ 7 \cdot X^{3} + 7 \cdot X^{4} + X^{7}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Pr(Bhattacharyya)} = 7 \cdot \beta^{3} + 7 \cdot \beta^{4} + \beta^{7} \hspace{0.05cm}.$$
  • For the Bhattacharyya parameter of the BSC model:
$$\beta = 2 \cdot \sqrt{\varepsilon \cdot (1- \varepsilon)} = 2 \cdot \sqrt{0.01 \cdot 0.99} = 0.199\hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Pr(Bhattacharyya)} = 7 \cdot 0.199^{3} + 7 \cdot 0.199^{4} + 0.199^{7} \hspace{0.15cm} \underline{ \approx 6.6\%} \hspace{0.05cm}.$$
  • A comparison with the actual block error probability as calculated in  "Exercise 1.12",
$${\rm Pr(block\:error)} \approx 21 \cdot \varepsilon^2 = 2.1 \cdot 10^{-3} \hspace{0.05cm},$$
shows that Bhattacharyya provides only a rough bound.  In the present case,  this bound is more than a factor of  $30$  higher than the actual value.


(3)  From the code table of the extended  $(8, 4, 4)$  Hamming code,  the following results are obtained:

$$W(X) = 1+ 14 \cdot X^{4} + X^{8}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Pr(Bhattacharyya)} = 14 \cdot \beta^{4} + \beta^{8} = 14 \cdot 0.199^{4} + 0.199^{8} \hspace{0.15cm} \underline{ \approx 2.2\%} \hspace{0.05cm}.$$


(4)  The equation for the Bhattacharyya parameter is:

$$\beta = \left\{ \begin{array}{c} \lambda \\ \\ 2 \cdot \sqrt{ \varepsilon \cdot (1- \varepsilon)}\\ \\ {\rm e}^{- R \cdot E_{\rm B}/N_0} \end{array} \right.\quad \begin{array}{*{1}c} {\rm for\hspace{0.15cm} the \hspace{0.15cm}BEC model},\\ \\ {\rm for\hspace{0.15cm} the \hspace{0.15cm}BSC model}, \\ \\{\rm for\hspace{0.15cm} the \hspace{0.15cm}AWGN model}. \end{array}$$

With the BEC model,  exactly the same bound is obtained when the erasure probability is  $\lambda = \beta \ \underline{= 0.199}$.


(5)  According to the above equation must apply:

$$\beta = {\rm e}^{- R \hspace{0.05cm}\cdot \hspace{0.05cm} E_{\rm B}/N_0} = 0.199 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} R \cdot E_{\rm B}/N_0 = 10^{0.199} = 1.58 \hspace{0.05cm}.$$
  • The code rate of the extended  $(8, 4, 4)$  Hamming code is  $R = 0.5$:
$$E_{\rm B}/N_0 = 3.16 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 \hspace{0.15cm} \underline{\approx 5\,{\rm dB}} \hspace{0.05cm}.$$


(6)  Using the code rate  $R = 4/7$  of the  $(7, 4, 3)$  Hamming code,  we obtain:

$$E_{\rm B}/N_0 = 7/4 \cdot 1.58 = 2.765 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm} E_{\rm B}/N_0 \hspace{0.15cm} \underline{\approx 4.417\,{\rm dB}} \hspace{0.05cm}.$$