Difference between revisions of "Aufgaben:Exercise 1.16: Block Error Probability Bounds for AWGN"

From LNTwww
 
(3 intermediate revisions by the same user not shown)
Line 53: Line 53:
  
 
Hints:  
 
Hints:  
* This exercise belongs to the chapter  [[Channel_Coding/Schranken_für_die_Blockfehlerwahrscheinlichkeit|"Block error probability bounds"]].
+
* This exercise belongs to the chapter  [[Channel_Coding/Bounds_for_Block_Error_Probability|"Bounds for block error probability"]].
  
 
* The above cited reference  "[Liv10]"  refers to the lecture manuscript "Liva, G.:  Channel Coding.   Chair of Communications Engineering, TU Munich and DLR Oberpfaffenhofen, 2010."
 
* The above cited reference  "[Liv10]"  refers to the lecture manuscript "Liva, G.:  Channel Coding.   Chair of Communications Engineering, TU Munich and DLR Oberpfaffenhofen, 2010."
  
* Further we refer to the interactive applet  [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen| "Complementary Gaussian error functions"]].
+
* Further we refer to the interactive HTML5/JavaScript applet  [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen| "Complementary Gaussian error functions"]].
  
  
Line 101: Line 101:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig ist die  <u>Antwort 2</u>. Das Distanzspektrum $\{W_i\}$ ist definiert für $i = 0, \ \text{...} \ , \ n$:
+
'''(1)'''&nbsp; The correct solution is <u>suggestion 2</u>:  
  
*$W_{1}$ indicates how often the Hamming weight $w_{\rm H}(\underline{x}_{i}) = 1$ occurs.
+
*The distance spectrum&nbsp; $\{W_i\}$&nbsp; is defined for&nbsp; $i = 0, \ \text{...} \ , \ n$:
*$W_{n}$ indicates how often the Hamming weight $w_{\rm H}(\underline{x}_{i}) = n$ occurs.
 
  
 +
#$W_{1}$&nbsp; indicates how often the Hamming weight&nbsp; $w_{\rm H}(\underline{x}_{i}) = 1$&nbsp; occurs.
 +
#$W_{n}$&nbsp; indicates how often the Hamming weight&nbsp; $w_{\rm H}(\underline{x}_{i}) = n$&nbsp; occurs.
  
With that, the ''Union Bound'' is:
+
 
 +
*With that,&nbsp; the&nbsp; "Union Bound"&nbsp; is:
  
 
:$$p_1 = {\rm Pr(Union \hspace{0.15cm}Bound)}= \sum_{i = 1}^{n}\hspace{0.05cm}W_i \cdot {\rm Q}\left ( \sqrt{i/\sigma^2} \right ) \hspace{0.05cm}.$$
 
:$$p_1 = {\rm Pr(Union \hspace{0.15cm}Bound)}= \sum_{i = 1}^{n}\hspace{0.05cm}W_i \cdot {\rm Q}\left ( \sqrt{i/\sigma^2} \right ) \hspace{0.05cm}.$$
 
   
 
   
  
'''(2)'''&nbsp; The distance spectrum of the $(8, 4, 4)$ code was given as $W_{0} = 1 , \ W_{4} = 14, \ W_{8} = 1$. Thus, one obtains for $\sigma = 1$:
+
'''(2)'''&nbsp; The distance spectrum of the&nbsp; $(8, 4, 4)$&nbsp; code was given as&nbsp; $W_{0} = 1 , \ W_{4} = 14, \ W_{8} = 1$.&nbsp;
 +
*Thus,&nbsp; one obtains for $\sigma = 1$:
 
:$$p_1 =  W_4 \cdot {\rm Q}\left ( 2 \right ) + W_8 \cdot {\rm Q}\left ( 2 \cdot \sqrt{2} \right )
 
:$$p_1 =  W_4 \cdot {\rm Q}\left ( 2 \right ) + W_8 \cdot {\rm Q}\left ( 2 \cdot \sqrt{2} \right )
 
= 14 \cdot 2.28 \cdot 10^{-2}+ 1 \cdot 0.23 \cdot 10^{-2} \hspace{0.15cm}\underline{\approx 32.15\%}\hspace{0.05cm},$$
 
= 14 \cdot 2.28 \cdot 10^{-2}+ 1 \cdot 0.23 \cdot 10^{-2} \hspace{0.15cm}\underline{\approx 32.15\%}\hspace{0.05cm},$$
  
or for $\sigma = 0.5$:
+
*For&nbsp; $\sigma = 0.5$:
 
:$$p_1 =  14 \cdot {\rm Q}\left ( 4 \right ) + {\rm Q}\left ( 4 \cdot \sqrt{2} \right )
 
:$$p_1 =  14 \cdot {\rm Q}\left ( 4 \right ) + {\rm Q}\left ( 4 \cdot \sqrt{2} \right )
 
= 14 \cdot 3.17 \cdot 10^{-5}+ 1.1 \cdot 10^{-8} \hspace{0.15cm}\underline{\approx 0.0444 \%}\hspace{0.05cm}.$$
 
= 14 \cdot 3.17 \cdot 10^{-5}+ 1.1 \cdot 10^{-8} \hspace{0.15cm}\underline{\approx 0.0444 \%}\hspace{0.05cm}.$$
 
   
 
   
  
'''(3)'''&nbsp; With the minimum distance $d_{\rm min} = 4$ we get:
+
'''(3)'''&nbsp; With the minimum distance&nbsp; $d_{\rm min} = 4$&nbsp; we get:
 
   
 
   
 
:$$\sigma = 1.0\text{:} \hspace{0.4cm} p_2 \hspace{-0.15cm}\ = \ \hspace{-0.15cm} W_4 \cdot {\rm Q}\left ( 2 \right ) \hspace{0.15cm}\underline{= 31.92\%}\hspace{0.05cm},$$
 
:$$\sigma = 1.0\text{:} \hspace{0.4cm} p_2 \hspace{-0.15cm}\ = \ \hspace{-0.15cm} W_4 \cdot {\rm Q}\left ( 2 \right ) \hspace{0.15cm}\underline{= 31.92\%}\hspace{0.05cm},$$
Line 127: Line 130:
  
  
'''(4)'''&nbsp; The correct solution is <u>suggestion 1</u>:  
+
'''(4)'''&nbsp; The correct solution is&nbsp; <u>suggestion 1</u>:  
*The ''Union Bound'' - denoted here by $p_{1}$ - is an upper bound on the block error probability in all cases.  
+
*The&nbsp; "Union Bound"&nbsp; - denoted here by&nbsp; $p_{1}$ - is an upper bound on the block error probability in all cases.
*For the bound $p_{2}$ (''Truncated Union Bound'') this is not always true.  
+
*For example, in the $(7, 4, 3)$ Hamming code &nbsp; ⇒ &nbsp; $W_{3} = W_{4} = 7, \ W_{7} = 1$ is obtained with standard deviation $\sigma = 1$:
+
*For the bound&nbsp; $p_{2}$&nbsp; ("Truncated Union Bound")&nbsp; this is not always true.
 +
 +
*For example,&nbsp; in the&nbsp; $(7, 4, 3)$&nbsp; Hamming code &nbsp; ⇒ &nbsp; $W_{3} = W_{4} = 7, \ W_{7} = 1$&nbsp; is obtained with standard deviation&nbsp; $\sigma = 1$:
 
   
 
   
 
:$$p_2 \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 7 \cdot {\rm Q}\left ( \sqrt{3} \right ) = 7 \cdot 4.18 \cdot 10^{-2} \approx 0.293\hspace{0.05cm},$$
 
:$$p_2 \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 7 \cdot {\rm Q}\left ( \sqrt{3} \right ) = 7 \cdot 4.18 \cdot 10^{-2} \approx 0.293\hspace{0.05cm},$$
 
:$$p_1 \hspace{-0.15cm}\ = \ \hspace{-0.15cm} p_2 + 7 \cdot {\rm Q}\left ( \sqrt{4} \right )+ 1 \cdot {\rm Q}\left ( \sqrt{7} \right ) \approx 0.455 \hspace{0.05cm}.$$
 
:$$p_1 \hspace{-0.15cm}\ = \ \hspace{-0.15cm} p_2 + 7 \cdot {\rm Q}\left ( \sqrt{4} \right )+ 1 \cdot {\rm Q}\left ( \sqrt{7} \right ) \approx 0.455 \hspace{0.05cm}.$$
  
The actual block error probability is likely to be between $p_{2} = 29.3\%$ and $p_{1} = 45.5\%$ (but has not been verified). <br>That is, &nbsp; $p_{2}$ is not an upper bound.
+
*The actual block error probability is likely to be between&nbsp; $p_{2} = 29.3\%$&nbsp; and&nbsp; $p_{1} = 45.5\%$&nbsp; (but this has not been verified). <br>That is, &nbsp; $p_{2}$ is not an upper bound.
  
  
'''(5)'''&nbsp; Correct are <u>suggested solutions 1 and 3</u>, as the following calculation for the $(8, 4, 4)$ code shows:
+
'''(5)'''&nbsp; Correct are&nbsp; <u>suggested solutions 1 and 3</u>,&nbsp; as the following calculation for the&nbsp; $(8, 4, 4)$&nbsp; code shows:
  
*It holds ${\rm Q}(x) ≤ {\rm Q_{CR}}(x) = {\rm e}^{-x^2/2}$. Thus, for the Union Bound
+
*It holds&nbsp; ${\rm Q}(x) ≤ {\rm Q_{CR}}(x) = {\rm e}^{-x^2/2}$.&nbsp; Thus,&nbsp; for the Union Bound
 
   
 
   
 
:$$p_1 = W_4 \cdot {\rm Q}\left ( \sqrt{4/\sigma^2} \right ) +W_8 \cdot {\rm Q}\left ( \sqrt{8/\sigma^2} \right )$$
 
:$$p_1 = W_4 \cdot {\rm Q}\left ( \sqrt{4/\sigma^2} \right ) +W_8 \cdot {\rm Q}\left ( \sqrt{8/\sigma^2} \right )$$
Line 148: Line 153:
 
:$$p_1 \le W_4 \cdot {\rm e}^{ - {4}/(2 \sigma^2) } +W_8 \cdot {\rm e}^{ - {8}/(2 \sigma^2) } \hspace{0.05cm}.$$
 
:$$p_1 \le W_4 \cdot {\rm e}^{ - {4}/(2 \sigma^2) } +W_8 \cdot {\rm e}^{ - {8}/(2 \sigma^2) } \hspace{0.05cm}.$$
  
*With $\beta = {\rm e}^{-1/(2\sigma^2)}$ can be written for this also (so the given $\beta = 1/\sigma$ is wrong):
+
*With&nbsp; $\beta = {\rm e}^{-1/(2\sigma^2)}$&nbsp; can be written for this also&nbsp; (so the given&nbsp; $\beta = 1/\sigma$&nbsp; is wrong):
 
   
 
   
 
:$$p_1 \le W_4 \cdot \beta^4 + W_8 \cdot \beta^8 \hspace{0.05cm}.$$
 
:$$p_1 \le W_4 \cdot \beta^4 + W_8 \cdot \beta^8 \hspace{0.05cm}.$$
  
*The weight function of the $(8, 4, 4)$ code is:
+
*The weight function of the&nbsp; $(8, 4, 4)$&nbsp; code is:
 
    
 
    
 
:$$W(X) = 1 + W_4 \cdot X^4 + W_8 \cdot X^8 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} W(\beta) - 1 = W_4 \cdot \beta^4 + W_8 \cdot \beta^8\hspace{0.3cm}
 
:$$W(X) = 1 + W_4 \cdot X^4 + W_8 \cdot X^8 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} W(\beta) - 1 = W_4 \cdot \beta^4 + W_8 \cdot \beta^8\hspace{0.3cm}
Line 158: Line 163:
  
  
'''(6)'''&nbsp; With $\sigma = 1$, the Bhattacharyya parameter is $\beta = {\rm e}^{-0.5} = 0.6065$, and thus one obtains for the Bhattacharyya bound:
+
'''(6)'''&nbsp; With&nbsp; $\sigma = 1$,&nbsp; the Bhattacharyya parameter is&nbsp; $\beta = {\rm e}^{-0.5} = 0.6065$,&nbsp; and thus one obtains for the Bhattacharyya Bound:
 
   
 
   
 
:$$p_3 = 14 \cdot \beta^4 + \beta^8 = 14 \cdot 0.135 + 0.018= 1.913 \hspace{0.15cm}\underline{= 191.3%}\hspace{0.05cm}.$$
 
:$$p_3 = 14 \cdot \beta^4 + \beta^8 = 14 \cdot 0.135 + 0.018= 1.913 \hspace{0.15cm}\underline{= 191.3%}\hspace{0.05cm}.$$
  
*Considering that $p_{3}$ is a bound for a probability, $p_{3} = 1.913$ is only a trivial bound.  
+
*Considering that&nbsp; $p_{3}$&nbsp; is a bound for a probability,&nbsp; $p_{3} = 1.913$&nbsp; is only a trivial bound.  
*For $\sigma = 0.5$, on the other hand, $\beta = {\rm e}^{-2}  \approx 0.135.$ Then holds:
+
 
 +
*For&nbsp; $\sigma = 0.5$,&nbsp; on the other hand,&nbsp; $\beta = {\rm e}^{-2}  \approx 0.135.$&nbsp; Then holds:
 
   
 
   
 
:$$p_3 = 14 \cdot \beta^4 + \beta^8 = 14 \cdot 3.35 \cdot 10^{-4} + 1.1 \cdot 10^{-7} \hspace{0.15cm}\underline{= 0.47 \%}\hspace{0.05cm}.$$
 
:$$p_3 = 14 \cdot \beta^4 + \beta^8 = 14 \cdot 3.35 \cdot 10^{-4} + 1.1 \cdot 10^{-7} \hspace{0.15cm}\underline{= 0.47 \%}\hspace{0.05cm}.$$
  
A comparison with subtask (2) shows that in the present example the Bhattacharyya bound $p_{3}$ is above the ''union bound'' $p_{1}$ by a factor $(0.47 - 10^{-2})/(0.044 - 10^{-2}) > 10$.
+
A comparison with subtask&nbsp; '''(2)'''&nbsp; shows that in the present example the Bhattacharyya Bound&nbsp; $p_{3}$&nbsp; is above the&nbsp; "Union Bound"&nbsp; $p_{1}$&nbsp; by a factor&nbsp;
*The reason for this large deviation is the Chernoff-Rubin bound, which is well above the ${\rm Q}$ function.  
+
:$$(0.47 - 10^{-2})/(0.044 - 10^{-2}) > 10.$$
*In [[Aufgaben:Exercise_1.16Z:_Bounds_for_the_Gaussian_Error_Function|"Exercise 1.16Z"]], the deviation between ${\rm Q}_{\rm CR}$ and ${\rm Q}(x)$ is also calculated quantitatively:
+
 +
*The reason for this large deviation is the Chernoff-Rubin bound,&nbsp; which is well above the&nbsp; ${\rm Q}$ function.
 +
 +
*In&nbsp; [[Aufgaben:Exercise_1.16Z:_Bounds_for_the_Gaussian_Error_Function|"Exercise 1.16Z"]],&nbsp; the deviation between&nbsp; ${\rm Q}_{\rm CR}$&nbsp; and&nbsp; ${\rm Q}(x)$&nbsp; is also calculated quantitatively:
 
   
 
   
 
:$${{\rm Q_{CR}}( x )}/{{\rm Q}( x )} \approx 2.5 \cdot x \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {{\rm Q_{CR}}( x = 4 )}/{{\rm Q}( x = 4)} \approx 10 \hspace{0.05cm}.$$
 
:$${{\rm Q_{CR}}( x )}/{{\rm Q}( x )} \approx 2.5 \cdot x \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {{\rm Q_{CR}}( x = 4 )}/{{\rm Q}( x = 4)} \approx 10 \hspace{0.05cm}.$$

Latest revision as of 17:17, 5 August 2022

Function  ${\rm Q}(x)$  and approximations;
it holds:  ${\rm Q_u}(x)\le{\rm Q}(x)\le{\rm Q_o}(x)$

We assume the following constellation:

  • A linear block code with code rate  $R = k/n$  and distance spectrum  $\{W_i\}, \ i = 1, \ \text{...} \ , n$,
  • an AWGN channel characterized by  $E_{\rm B}/N_{0}$   ⇒   convertible to noise power  $\sigma^2$,
  • a receiver based on  "soft decision"  as well as the  "maximum likelihood criterion".


Under the assumption valid for the entire exercise that always the zero-word  $\underline{x}_{1} = (0, 0, \text{... } \ , 0)$  is sent, the  "pairwise error probability"  with a different code word  $\underline{x}_{l} (l = 2,\ \text{...} \ , 2^k)$:

$$ {\rm Pr}[\hspace{0.05cm}\underline{x}_{\hspace{0.02cm}1} \hspace{-0.02cm}\mapsto \hspace{-0.02cm}\underline{x}_{\hspace{0.02cm}l}\hspace{0.05cm}] = {\rm Q}\left ( \sqrt{w_{\rm H}(\underline{x}_{\hspace{0.02cm}l})/\sigma^2} \right ) \hspace{0.05cm}.$$

The derivation of this relation can be found in  [Liv10].  Used in this equation are:

  • the  "Hamming weight"  $w_{\rm H}(\underline{x}_{l})$  of the code word  $\underline{x}_{l}$,


This allows various bounds to be specified for the block error probability:

$$p_1 = \sum_{l = 2}^{2^k}\hspace{0.05cm}{\rm Pr}[\hspace{0.05cm}\underline{x}_{\hspace{0.02cm}1} \hspace{-0.02cm}\mapsto \hspace{-0.02cm}\underline{x}_{\hspace{0.02cm}l}\hspace{0.05cm}] = \sum_{l \hspace{0.05cm}= \hspace{0.05cm}2}^{2^k}\hspace{0.05cm}{\rm Q}\left ( \sqrt{w_{\rm H}(\underline{x}_{\hspace{0.02cm}l})/\sigma^2} \right ) \hspace{0.05cm},$$
$$p_2 = W_{d_{\rm min}} \cdot {\rm Q}\left ( \sqrt{d_{\rm min}/\sigma^2} \right ) \hspace{0.05cm},$$
$$p_3 = W(\beta) - 1\hspace{0.05cm},\hspace{0.2cm} {\rm with}\hspace{0.15cm} \beta = {\rm e}^{ - 1/(2\sigma^2) } \hspace{0.05cm}.$$
In this case,  replace the distance spectrum  $\{W_i\}$  with the weight enumerator function:
$$\left \{ \hspace{0.05cm} W_i \hspace{0.05cm} \right \} \hspace{0.3cm} \Leftrightarrow \hspace{0.3cm} W(X) = \sum_{i=0 }^{n} W_i \cdot X^{i} = W_0 + W_1 \cdot X + W_2 \cdot X^{2} + ... \hspace{0.05cm} + W_n \cdot X^{n}\hspace{0.05cm}.$$

In the transition from the  "Union Bound"  $p_{1}$  to the more imprecise bound  $p_{3}$  among others

  • Both functions are shown in the above graph  (red and green curve, resp.).


In the  "Exercise 1.16Z"  the relationship between these functions is evaluated numerically and referenced to the bounds  ${\rm Q}_{\rm o}(x)$ and ${\rm Q}_{\rm u}(x)$  which are also drawn in the above graph.



Hints:

  • The above cited reference  "[Liv10]"  refers to the lecture manuscript "Liva, G.:  Channel Coding.  Chair of Communications Engineering, TU Munich and DLR Oberpfaffenhofen, 2010."



Questions

1

Which equation applies to the  "Union Bound"?

$p_{1} = \sum_{l\hspace{0.05cm}=\hspace{0.05cm}2}^{2^k} W_{l} · {\rm Q}\big[(l/\sigma^2)^{0.5}\big],$
$p_{1} = \sum_{i\hspace{0.05cm}=\hspace{0.05cm}1}^{n} W_{i} · {\rm Q}\big[(i/\sigma^2)^{0.5}\big].$

2

Specify the Union Bound for the  $(8, 4, 4)$  code and various  $\sigma$.

$\sigma = 1.0 \text{:} \hspace{0.4cm} p_{1} \ = \ $

$\ \%$
$\sigma = 0.5 \text{:} \hspace{0.4cm} p_{1} \ = \ $

$\ \%$

3

Given the same boundary conditions, what does the  "Truncated Union Bound"  provide?

$\sigma = 1.0 \text{:} \hspace{0.4cm} p_{2} \ = \ $

$\ \%$
$\sigma = 0.5 \text{:} \hspace{0.4cm} p_{2} \ = \ $

$\ \%$

4

Which statement is always true  (for all constellations)?

The block error probability is never greater than  $p_{1}$.
The block error probability is never greater than  $p_{2}$.

5

How do you get from  $p_{1}$  to the  "Bhattacharyya Bound"  $p_{3}$? 

Replace the error function  ${\rm Q}(x)$  with the function  ${\rm Q}_{\rm CR}(x)$.
Set the Bhattacharyya parameter  $\beta = 1/\sigma$.
Instead of  $\{W_i\}$  uses the weight enumerator function  $W(X)$.

6

Specify the Bhattacharyya Bound for  $\sigma = 1$  and  $\sigma = 0.5$ .

$\sigma = 1.0 \text{:} \hspace{0.4cm} p_{3} \ = \ $

$\ \%$
$\sigma = 0.5 \text{:} \hspace{0.4cm} p_{3} \ = \ $

$\ \%$


Solution

(1)  The correct solution is suggestion 2:

  • The distance spectrum  $\{W_i\}$  is defined for  $i = 0, \ \text{...} \ , \ n$:
  1. $W_{1}$  indicates how often the Hamming weight  $w_{\rm H}(\underline{x}_{i}) = 1$  occurs.
  2. $W_{n}$  indicates how often the Hamming weight  $w_{\rm H}(\underline{x}_{i}) = n$  occurs.


  • With that,  the  "Union Bound"  is:
$$p_1 = {\rm Pr(Union \hspace{0.15cm}Bound)}= \sum_{i = 1}^{n}\hspace{0.05cm}W_i \cdot {\rm Q}\left ( \sqrt{i/\sigma^2} \right ) \hspace{0.05cm}.$$


(2)  The distance spectrum of the  $(8, 4, 4)$  code was given as  $W_{0} = 1 , \ W_{4} = 14, \ W_{8} = 1$. 

  • Thus,  one obtains for $\sigma = 1$:
$$p_1 = W_4 \cdot {\rm Q}\left ( 2 \right ) + W_8 \cdot {\rm Q}\left ( 2 \cdot \sqrt{2} \right ) = 14 \cdot 2.28 \cdot 10^{-2}+ 1 \cdot 0.23 \cdot 10^{-2} \hspace{0.15cm}\underline{\approx 32.15\%}\hspace{0.05cm},$$
  • For  $\sigma = 0.5$:
$$p_1 = 14 \cdot {\rm Q}\left ( 4 \right ) + {\rm Q}\left ( 4 \cdot \sqrt{2} \right ) = 14 \cdot 3.17 \cdot 10^{-5}+ 1.1 \cdot 10^{-8} \hspace{0.15cm}\underline{\approx 0.0444 \%}\hspace{0.05cm}.$$


(3)  With the minimum distance  $d_{\rm min} = 4$  we get:

$$\sigma = 1.0\text{:} \hspace{0.4cm} p_2 \hspace{-0.15cm}\ = \ \hspace{-0.15cm} W_4 \cdot {\rm Q}\left ( 2 \right ) \hspace{0.15cm}\underline{= 31.92\%}\hspace{0.05cm},$$
$$\sigma = 0.5\text{:} \hspace{0.4cm} p_2 \hspace{-0.15cm}\ = \ \hspace{-0.15cm}W_4 \cdot {\rm Q}\left ( 4 \right ) \approx p_1 \hspace{0.15cm}\underline{ = 0.0444 \%}\hspace{0.05cm}.$$


(4)  The correct solution is  suggestion 1:

  • The  "Union Bound"  - denoted here by  $p_{1}$ - is an upper bound on the block error probability in all cases.
  • For the bound  $p_{2}$  ("Truncated Union Bound")  this is not always true.
  • For example,  in the  $(7, 4, 3)$  Hamming code   ⇒   $W_{3} = W_{4} = 7, \ W_{7} = 1$  is obtained with standard deviation  $\sigma = 1$:
$$p_2 \hspace{-0.15cm}\ = \ \hspace{-0.15cm} 7 \cdot {\rm Q}\left ( \sqrt{3} \right ) = 7 \cdot 4.18 \cdot 10^{-2} \approx 0.293\hspace{0.05cm},$$
$$p_1 \hspace{-0.15cm}\ = \ \hspace{-0.15cm} p_2 + 7 \cdot {\rm Q}\left ( \sqrt{4} \right )+ 1 \cdot {\rm Q}\left ( \sqrt{7} \right ) \approx 0.455 \hspace{0.05cm}.$$
  • The actual block error probability is likely to be between  $p_{2} = 29.3\%$  and  $p_{1} = 45.5\%$  (but this has not been verified).
    That is,   $p_{2}$ is not an upper bound.


(5)  Correct are  suggested solutions 1 and 3,  as the following calculation for the  $(8, 4, 4)$  code shows:

  • It holds  ${\rm Q}(x) ≤ {\rm Q_{CR}}(x) = {\rm e}^{-x^2/2}$.  Thus,  for the Union Bound
$$p_1 = W_4 \cdot {\rm Q}\left ( \sqrt{4/\sigma^2} \right ) +W_8 \cdot {\rm Q}\left ( \sqrt{8/\sigma^2} \right )$$
another upper bound can be specified:
$$p_1 \le W_4 \cdot {\rm e}^{ - {4}/(2 \sigma^2) } +W_8 \cdot {\rm e}^{ - {8}/(2 \sigma^2) } \hspace{0.05cm}.$$
  • With  $\beta = {\rm e}^{-1/(2\sigma^2)}$  can be written for this also  (so the given  $\beta = 1/\sigma$  is wrong):
$$p_1 \le W_4 \cdot \beta^4 + W_8 \cdot \beta^8 \hspace{0.05cm}.$$
  • The weight function of the  $(8, 4, 4)$  code is:
$$W(X) = 1 + W_4 \cdot X^4 + W_8 \cdot X^8 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} W(\beta) - 1 = W_4 \cdot \beta^4 + W_8 \cdot \beta^8\hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_3 = W(\beta) - 1 \ge p_1\hspace{0.05cm}.$$


(6)  With  $\sigma = 1$,  the Bhattacharyya parameter is  $\beta = {\rm e}^{-0.5} = 0.6065$,  and thus one obtains for the Bhattacharyya Bound:

$$p_3 = 14 \cdot \beta^4 + \beta^8 = 14 \cdot 0.135 + 0.018= 1.913 \hspace{0.15cm}\underline{= 191.3%}\hspace{0.05cm}.$$
  • Considering that  $p_{3}$  is a bound for a probability,  $p_{3} = 1.913$  is only a trivial bound.
  • For  $\sigma = 0.5$,  on the other hand,  $\beta = {\rm e}^{-2} \approx 0.135.$  Then holds:
$$p_3 = 14 \cdot \beta^4 + \beta^8 = 14 \cdot 3.35 \cdot 10^{-4} + 1.1 \cdot 10^{-7} \hspace{0.15cm}\underline{= 0.47 \%}\hspace{0.05cm}.$$

A comparison with subtask  (2)  shows that in the present example the Bhattacharyya Bound  $p_{3}$  is above the  "Union Bound"  $p_{1}$  by a factor 

$$(0.47 - 10^{-2})/(0.044 - 10^{-2}) > 10.$$
  • The reason for this large deviation is the Chernoff-Rubin bound,  which is well above the  ${\rm Q}$ function.
  • In  "Exercise 1.16Z",  the deviation between  ${\rm Q}_{\rm CR}$  and  ${\rm Q}(x)$  is also calculated quantitatively:
$${{\rm Q_{CR}}( x )}/{{\rm Q}( x )} \approx 2.5 \cdot x \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {{\rm Q_{CR}}( x = 4 )}/{{\rm Q}( x = 4)} \approx 10 \hspace{0.05cm}.$$