Difference between revisions of "Aufgaben:Exercise 1.1: ISDN Supply Lines"

From LNTwww
Line 2: Line 2:
 
{{quiz-Header|Buchseite=Examples_of_Communication_Systems/General_Description_of_ISDN
 
{{quiz-Header|Buchseite=Examples_of_Communication_Systems/General_Description_of_ISDN
 
}}
 
}}
 +
[[File:EN_LZI_Z_4_6_neu.png|right|frame|Main bundle, basic bundle, and star quad]]
 +
In ISDN  ("Integrated Services Digital Network")  the final branch  (near the subscriber)  is connected to a  "local exchange"  $\rm (LE)$  by a copper twisted pair,  whereby two twisted pairs are twisted into a so-called  "star quad".  Several such star quads are then combined to form a  "basic bundle",  and several basic bundles are combined to form a  "main bundle"  (see graphic).
  
[[File:P_ID1577__Bei_A_1_1.png|right|frame|Main bundle, basic bundle, and star quad]]
+
In the network of  "Deutsche Telekom"  (formerly:  "Deutsche Bundespost"),  mostly copper lines with  $0.4$  mm core diameter are found,  for whose attenuation and phase function the following equations are given in  '''[PW95]''':   
In ISDN  (''Integrated Services Digital Network'')  the final branch (near the subscriber) is connected to a local exchange (LE) by a copper twisted pair, whereby two twisted pairs are twisted into a so-called star quad. Several such star quads are then combined to form a basic bundle, and several basic bundles are combined to form a main bundle (see graphic).
 
 
 
In the network of Deutsche Telekom (formerly:  Deutsche Bundespost), mostly copper lines with 0.4 mm core diameter are found, for whose attenuation and phase function the following equations are given in  [PW95]:   
 
 
:$$\frac{a_{\rm K}(f)}{\rm dB} = \left [ 5.1 + 14.3 \cdot \left (\frac{f}{\rm MHz}\right )^{0.59}\right ]\cdot\frac{l}{\rm km}
 
:$$\frac{a_{\rm K}(f)}{\rm dB} = \left [ 5.1 + 14.3 \cdot \left (\frac{f}{\rm MHz}\right )^{0.59}\right ]\cdot\frac{l}{\rm km}
 
     \hspace{0.05cm},$$
 
     \hspace{0.05cm},$$
 
:$$\frac{b_{\rm K}(f)}{\rm rad} = \left [ 32.9 \cdot \frac{f}{\rm MHz} + 2.26 \cdot \left (\frac{f}{\rm MHz}\right )^{0.5}\right ]\cdot\frac{l}{\rm km}    \hspace{0.05cm}.$$
 
:$$\frac{b_{\rm K}(f)}{\rm rad} = \left [ 32.9 \cdot \frac{f}{\rm MHz} + 2.26 \cdot \left (\frac{f}{\rm MHz}\right )^{0.5}\right ]\cdot\frac{l}{\rm km}    \hspace{0.05cm}.$$
Here  $l$  denotes the line length.
+
Here  $l$  denotes the cable length.
  
  
Line 16: Line 15:
  
  
 +
<u>Notes:</u>
 +
*The exercise belongs to the chapter&nbsp; [[Examples_of_Communication_Systems/General_Description_of_ISDN|"General Description of ISDN"]].
  
''Notes:''
+
*In particular,&nbsp; reference is made to the section&nbsp; [[Examples_of_Communication_Systems/General_Description_of_ISDN#Network_infrastructure_for_ISDN|"Network infrastructure for ISDN"]].
*The exercise belongs to the chapter&nbsp; [[Examples_of_Communication_Systems/General_Description_of_ISDN|"General Description of ISDN"]].
+
 
*In particular, reference is made to the section&nbsp; [[Examples_of_Communication_Systems/General_Description_of_ISDN#Network_infrastructure_for_ISDN|"Network infrastructure for ISDN"]].
+
*Further information on the attenuation of copper lines can be found in the chapter&nbsp; "Properties of Electrical Cables"&nbsp; of the book&nbsp; [[Lineare zeitinvariante Systeme|"Linear and Time Invariant Systems"]].
*Further information on the attenuation of copper lines can be found in the chapter "Properties of Electrical Cables" of the book [[Lineare zeitinvariante Systeme|"Linear and Time Invariant Systems"]].
+
 
*[PW95]&nbsp; refers to the following publication: Pollakowski, P.; Wellhausen, H.-W.: Eigenschaften symmetrischer Ortsanschlusskabel im Frequenzbereich bis 30 MHz. Deutsche Telekom AG, Forschungs- und Technologiezentrum Darmstadt, 1995.
+
*'''[PW95]'''&nbsp; refers to the following&nbsp; (German language)&nbsp;  publication:&nbsp; Pollakowski, P.; Wellhausen, H.-W.: Eigenschaften symmetrischer Ortsanschlusskabel im Frequenzbereich bis 30 MHz. Deutsche Telekom AG, Forschungs- und Technologiezentrum Darmstadt, 1995.
 
   
 
   
  
Line 30: Line 31:
 
<quiz display=simple>
 
<quiz display=simple>
  
{How many subscribers&nbsp; ($N$)&nbsp; can be connected to an ISDN local exchange through the main cable shown?
+
{How many subscribers&nbsp; $(N)$&nbsp; can be connected to an ISDN local exchange through the main cable shown?
 
|type="{}"}
 
|type="{}"}
 
$N \ = \ $ { 50 3% }  
 
$N \ = \ $ { 50 3% }  
Line 40: Line 41:
 
- Intersymbol interference occurs.
 
- Intersymbol interference occurs.
  
{A DC signal is attenuated by a factor of $4$.&nbsp; What is the cable length&nbsp; $l$&nbsp;?
+
{A DC signal is attenuated by a factor of&nbsp; $4$.&nbsp; What is the cable length&nbsp; $l$&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
$l \ = \ $ { 2.36 3% } $\ \rm km$
 
$l \ = \ $ { 2.36 3% } $\ \rm km$

Revision as of 17:51, 14 October 2022

Main bundle, basic bundle, and star quad

In ISDN  ("Integrated Services Digital Network")  the final branch  (near the subscriber)  is connected to a  "local exchange"  $\rm (LE)$  by a copper twisted pair,  whereby two twisted pairs are twisted into a so-called  "star quad".  Several such star quads are then combined to form a  "basic bundle",  and several basic bundles are combined to form a  "main bundle"  (see graphic).

In the network of  "Deutsche Telekom"  (formerly:  "Deutsche Bundespost"),  mostly copper lines with  $0.4$  mm core diameter are found,  for whose attenuation and phase function the following equations are given in  [PW95]

$$\frac{a_{\rm K}(f)}{\rm dB} = \left [ 5.1 + 14.3 \cdot \left (\frac{f}{\rm MHz}\right )^{0.59}\right ]\cdot\frac{l}{\rm km} \hspace{0.05cm},$$
$$\frac{b_{\rm K}(f)}{\rm rad} = \left [ 32.9 \cdot \frac{f}{\rm MHz} + 2.26 \cdot \left (\frac{f}{\rm MHz}\right )^{0.5}\right ]\cdot\frac{l}{\rm km} \hspace{0.05cm}.$$

Here  $l$  denotes the cable length.



Notes:

  • [PW95]  refers to the following  (German language)  publication:  Pollakowski, P.; Wellhausen, H.-W.: Eigenschaften symmetrischer Ortsanschlusskabel im Frequenzbereich bis 30 MHz. Deutsche Telekom AG, Forschungs- und Technologiezentrum Darmstadt, 1995.



Questions

1

How many subscribers  $(N)$  can be connected to an ISDN local exchange through the main cable shown?

$N \ = \ $

2

What are the consequences of two-wire transmission?

The two transmission directions interfere with each other.
Crosstalk noise may occur.
Intersymbol interference occurs.

3

A DC signal is attenuated by a factor of  $4$.  What is the cable length  $l$ ?

$l \ = \ $

$\ \rm km$

4

Which attenuation and phase value results from this for the frequency  $f = 120 \ \rm kHz$ ?

$a_{\rm K}(f = 120 \ \rm kHz) \ = \ $

$\ \rm dB$
$b_{\rm K}(f = 120 \ \rm kHz) \ = \ $

$\ \rm rad$


Solution

(1)  Two-wire transmission is used in the connection area. The possible connections are equal to the number of pairs in the main cable:   $\underline{N = 50}$.


(2)  Solutions 1 and 2 are correct:

  • Two-wire transmission requires a directional separation method, namely the so-called fork circuit. This has the task that at receiver  $\rm A$  only the transmitted signal of subscriber  $\rm B$  arrives, but not the own transmitted signal. This is generally quite successful with narrowband signals – for example, speech – but not completely.
  • Due to inductive and capacitive couplings, crosstalk can occur from the twin wire located in the same star quad, whereby near-end crosstalk (i.e. the interfering transmitter and the interfered receiver are located together) leads to greater impairments than far-end crosstalk.
  • On the other hand, the last solution is not applicable. Intersymbol interference – i.e. the mutual interference of neighboring symbols – can certainly occur, but it is not related to two-wire transmission. The reason for this are rather (linear) distortions due to the specific attenuation and phase curves.


(3)  The DC signal attenuation by a factor of  $4$  can be expressed as follows:

$$a_{\rm K}(f = 0) = 20 \cdot {\rm lg}\,\,(4) = 12.04\,{\rm dB}\hspace{0.05cm}.$$
  • With the given coefficient  $\text{5.1 dB/km}$,  this gives the line length $l = 12.04/5.1\hspace{0.15cm}\underline{ = 2.36 \ \rm km}$.


(4)  Using the given equations and  $ l = 2.36 \ \rm km$, we obtain:

$$a_{\rm K}(f = 120\,{\rm kHz})= (5.1 + 14.3 \cdot 0.12^{\hspace{0.05cm}0.59}) \cdot 2.36\,{\rm dB} \hspace{0.15cm}\underline{\approx 21.7\,{\rm dB}}\hspace{0.05cm},$$
$$b_{\rm K}(f = 120\,{\rm kHz}) = (32.9 \cdot 0.12 + 2.26 \cdot 0.12^{\hspace{0.05cm}0.5}) \cdot 2.36\,{\rm rad}\hspace{0.15cm}\underline{ \approx 11.2\,{\rm rad}}\hspace{0.05cm}.$$