Difference between revisions of "Aufgaben:Exercise 1.1: ISDN Supply Lines"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Beispiele von Nachrichtensystemen/Allgemeine Beschreibung von ISDN }} [[File:|right|]] ===Fragebogen=== <quiz display=simple> {Mu…“)
 
 
(24 intermediate revisions by 7 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Beispiele von Nachrichtensystemen/Allgemeine Beschreibung von ISDN
+
{{quiz-Header|Buchseite=Examples_of_Communication_Systems/General_Description_of_ISDN
 
}}
 
}}
 +
[[File:EN_Bei_A_1_1.png|right|frame|Main bundle, basic bundle, and star quad]]
 +
In ISDN&nbsp; ("Integrated Services Digital Network")&nbsp; the final branch&nbsp; (near the subscriber)&nbsp; is connected to a&nbsp; "local exchange"&nbsp; $\rm (LE)$&nbsp; by a copper twisted pair,&nbsp; whereby two twisted pairs are twisted into a so-called&nbsp; "star quad".&nbsp; Several such star quads are then combined to form a&nbsp; "basic bundle",&nbsp; and several basic bundles are combined to form a&nbsp; "main bundle"&nbsp; (see graphic).
  
[[File:|right|]]
+
In the network of&nbsp; "Deutsche Telekom"&nbsp; (formerly:&nbsp; "Deutsche Bundespost"),&nbsp; mostly copper lines with&nbsp; $0.4$&nbsp; mm core diameter are found,&nbsp; for whose attenuation and phase function the following equations are given in&nbsp; '''[PW95]''':&nbsp;
 +
:$$\frac{a_{\rm K}(f)}{\rm dB} = \left [ 5.1 + 14.3 \cdot \left (\frac{f}{\rm MHz}\right )^{0.59}\right ]\cdot\frac{l}{\rm km}
 +
    \hspace{0.05cm},$$
 +
:$$\frac{b_{\rm K}(f)}{\rm rad} = \left [ 32.9 \cdot \frac{f}{\rm MHz} + 2.26 \cdot \left (\frac{f}{\rm MHz}\right )^{0.5}\right ]\cdot\frac{l}{\rm km}    \hspace{0.05cm}.$$
 +
Here&nbsp; $l$&nbsp; denotes the cable length.
  
  
===Fragebogen===
 
  
 +
 +
 +
<u>Notes:</u>
 +
*The exercise belongs to the chapter&nbsp; [[Examples_of_Communication_Systems/General_Description_of_ISDN|"General Description of ISDN"]].
 +
 +
*In particular,&nbsp; reference is made to the section&nbsp; [[Examples_of_Communication_Systems/General_Description_of_ISDN#Network_infrastructure_for_ISDN|"Network infrastructure for ISDN"]].
 +
 +
*Further information on the attenuation of copper lines can be found in the chapter&nbsp; "Properties of Electrical Cables"&nbsp; of the book&nbsp; [[Lineare zeitinvariante Systeme|"Linear and Time Invariant Systems"]].
 +
 +
*'''[PW95]'''&nbsp; refers to the following&nbsp; (German language)&nbsp;  publication:&nbsp; Pollakowski, P.; Wellhausen, H.-W.: Eigenschaften symmetrischer Ortsanschlusskabel im Frequenzbereich bis 30 MHz. Deutsche Telekom AG, Forschungs- und Technologiezentrum Darmstadt, 1995.
 +
 +
 +
 +
 +
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
 
 +
{How many subscribers&nbsp; $(N)$&nbsp; can be connected to an ISDN local exchange through the main cable shown?
 +
|type="{}"}
 +
$N \ = \ $ { 50 3% }
 +
 
 +
{What are the consequences of two-wire transmission?
 
|type="[]"}
 
|type="[]"}
- Falsch
+
+ The two transmission directions interfere with each other.
+ Richtig
+
+ Crosstalk noise may occur.
 +
- Intersymbol interference occurs.
  
 +
{A DC signal is attenuated by a factor of&nbsp; $4$.&nbsp; What is the cable length&nbsp; $l$&nbsp;?
 +
|type="{}"}
 +
$l \ = \ $ { 2.36 3% } $\ \rm km$
  
{Input-Box Frage
+
{Which attenuation and phase value results from this for the frequency&nbsp; $f = 120 \ \rm kHz$&nbsp;?
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$a_{\rm K}(f = 120 \ \rm kHz) \ = \ $ { 21.7 3% } $\ \rm dB$
 +
$b_{\rm K}(f = 120 \ \rm kHz) \ = \ $ { 11.2 3% } $\ \rm rad$
 +
 
 +
</quiz>
 +
 
 +
===Solution===
 +
{{ML-Kopf}}
 +
'''(1)'''&nbsp; Two-wire transmission is used in the connection area.&nbsp; The possible connections are equal to the number of pairs in the main cable: &nbsp;
 +
:$$\underline{N = 50}.$$
  
 +
 +
'''(2)'''&nbsp; <u>Solutions 1 and 2</u>&nbsp; are correct:
 +
*Two-wire transmission requires a directional separation method,&nbsp; namely the so-called&nbsp; "fork circuit".&nbsp; This has the task that at receiver &nbsp;$\rm A$&nbsp; only the transmitted signal of subscriber &nbsp;$\rm B$&nbsp; arrives,&nbsp; but not the own transmitted signal.&nbsp; This is generally quite successful with narrowband signals – for example,&nbsp; speech – but not completely.
 +
 +
*Due to inductive and capacitive couplings,&nbsp; crosstalk can occur from the twin wire located in the same star quad,&nbsp; whereby&nbsp; "near-end crosstalk"&nbsp;&nbsp; $($i.e. the interfering transmitter and the interfered receiver are located together$)$&nbsp; leads to greater impairments than&nbsp; "far-end crosstalk".
 +
 +
*On the other hand,&nbsp; the last solution is not applicable.&nbsp; Intersymbol interference – i.e. the mutual interference of neighboring symbols – can certainly occur,&nbsp; but it is not related to two-wire transmission.&nbsp; The reason for this are rather&nbsp; (linear)&nbsp; distortions due to the specific attenuation and phase curves.
 +
 +
 +
 +
'''(3)'''&nbsp; The DC signal attenuation by a factor of&nbsp; $4$&nbsp; can be expressed as follows:
 +
:$$a_{\rm K}(f = 0) = 20 \cdot {\rm lg}\,\,(4) = 12.04\,{\rm dB}\hspace{0.05cm}.$$
 +
*With the given coefficient&nbsp; $\text{5.1 dB/km}$,&nbsp; this gives the cable length&nbsp; $l = 12.04/5.1\hspace{0.15cm}\underline{ = 2.36 \ \rm km}$.
  
  
</quiz>
 
  
===Musterlösung===
+
'''(4)'''&nbsp; Using the given equations and&nbsp; $ l = 2.36 \ \rm km$,&nbsp; we obtain:
{{ML-Kopf}}
+
:$$a_{\rm K}(f = 120\,{\rm kHz})= (5.1 + 14.3 \cdot 0.12^{\hspace{0.05cm}0.59}) \cdot 2.36\,{\rm dB} \hspace{0.15cm}\underline{\approx 21.7\,{\rm dB}}\hspace{0.05cm},$$
'''1.'''
+
:$$b_{\rm K}(f = 120\,{\rm kHz}) = (32.9 \cdot 0.12 + 2.26 \cdot 0.12^{\hspace{0.05cm}0.5}) \cdot 2.36\,{\rm rad}\hspace{0.15cm}\underline{ \approx 11.2\,{\rm rad}}\hspace{0.05cm}.$$
'''2.'''
 
'''3.'''
 
'''4.'''
 
'''5.'''
 
'''6.'''
 
'''7.'''
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
 
+
[[Category:Examples of Communication Systems: Exercises|^1.1 General Description of ISDN^]]
[[Category:Aufgaben zu Beispiele von Nachrichtensystemen|^1.1 Allgemeine Beschreibung von ISDN^]]
 

Latest revision as of 16:18, 26 October 2022

Main bundle, basic bundle, and star quad

In ISDN  ("Integrated Services Digital Network")  the final branch  (near the subscriber)  is connected to a  "local exchange"  $\rm (LE)$  by a copper twisted pair,  whereby two twisted pairs are twisted into a so-called  "star quad".  Several such star quads are then combined to form a  "basic bundle",  and several basic bundles are combined to form a  "main bundle"  (see graphic).

In the network of  "Deutsche Telekom"  (formerly:  "Deutsche Bundespost"),  mostly copper lines with  $0.4$  mm core diameter are found,  for whose attenuation and phase function the following equations are given in  [PW95]

$$\frac{a_{\rm K}(f)}{\rm dB} = \left [ 5.1 + 14.3 \cdot \left (\frac{f}{\rm MHz}\right )^{0.59}\right ]\cdot\frac{l}{\rm km} \hspace{0.05cm},$$
$$\frac{b_{\rm K}(f)}{\rm rad} = \left [ 32.9 \cdot \frac{f}{\rm MHz} + 2.26 \cdot \left (\frac{f}{\rm MHz}\right )^{0.5}\right ]\cdot\frac{l}{\rm km} \hspace{0.05cm}.$$

Here  $l$  denotes the cable length.



Notes:

  • [PW95]  refers to the following  (German language)  publication:  Pollakowski, P.; Wellhausen, H.-W.: Eigenschaften symmetrischer Ortsanschlusskabel im Frequenzbereich bis 30 MHz. Deutsche Telekom AG, Forschungs- und Technologiezentrum Darmstadt, 1995.



Questions

1

How many subscribers  $(N)$  can be connected to an ISDN local exchange through the main cable shown?

$N \ = \ $

2

What are the consequences of two-wire transmission?

The two transmission directions interfere with each other.
Crosstalk noise may occur.
Intersymbol interference occurs.

3

A DC signal is attenuated by a factor of  $4$.  What is the cable length  $l$ ?

$l \ = \ $

$\ \rm km$

4

Which attenuation and phase value results from this for the frequency  $f = 120 \ \rm kHz$ ?

$a_{\rm K}(f = 120 \ \rm kHz) \ = \ $

$\ \rm dB$
$b_{\rm K}(f = 120 \ \rm kHz) \ = \ $

$\ \rm rad$


Solution

(1)  Two-wire transmission is used in the connection area.  The possible connections are equal to the number of pairs in the main cable:  

$$\underline{N = 50}.$$


(2)  Solutions 1 and 2  are correct:

  • Two-wire transmission requires a directional separation method,  namely the so-called  "fork circuit".  This has the task that at receiver  $\rm A$  only the transmitted signal of subscriber  $\rm B$  arrives,  but not the own transmitted signal.  This is generally quite successful with narrowband signals – for example,  speech – but not completely.
  • Due to inductive and capacitive couplings,  crosstalk can occur from the twin wire located in the same star quad,  whereby  "near-end crosstalk"   $($i.e. the interfering transmitter and the interfered receiver are located together$)$  leads to greater impairments than  "far-end crosstalk".
  • On the other hand,  the last solution is not applicable.  Intersymbol interference – i.e. the mutual interference of neighboring symbols – can certainly occur,  but it is not related to two-wire transmission.  The reason for this are rather  (linear)  distortions due to the specific attenuation and phase curves.


(3)  The DC signal attenuation by a factor of  $4$  can be expressed as follows:

$$a_{\rm K}(f = 0) = 20 \cdot {\rm lg}\,\,(4) = 12.04\,{\rm dB}\hspace{0.05cm}.$$
  • With the given coefficient  $\text{5.1 dB/km}$,  this gives the cable length  $l = 12.04/5.1\hspace{0.15cm}\underline{ = 2.36 \ \rm km}$.


(4)  Using the given equations and  $ l = 2.36 \ \rm km$,  we obtain:

$$a_{\rm K}(f = 120\,{\rm kHz})= (5.1 + 14.3 \cdot 0.12^{\hspace{0.05cm}0.59}) \cdot 2.36\,{\rm dB} \hspace{0.15cm}\underline{\approx 21.7\,{\rm dB}}\hspace{0.05cm},$$
$$b_{\rm K}(f = 120\,{\rm kHz}) = (32.9 \cdot 0.12 + 2.26 \cdot 0.12^{\hspace{0.05cm}0.5}) \cdot 2.36\,{\rm rad}\hspace{0.15cm}\underline{ \approx 11.2\,{\rm rad}}\hspace{0.05cm}.$$