Difference between revisions of "Aufgaben:Exercise 1.1Z: Binary Entropy Function"

From LNTwww
Line 17: Line 17:
 
Die Grafik zeigt diese binäre Entropiefunktion in Abhängigkeit des Parameters $p$, wobei $0 ≤ p ≤ 1$ vorausgesetzt wird.
 
Die Grafik zeigt diese binäre Entropiefunktion in Abhängigkeit des Parameters $p$, wobei $0 ≤ p ≤ 1$ vorausgesetzt wird.
  
:In den Teilaufgaben (5) und (6) soll der relative Fehler ermittelt werden, wenn die Symbolwahrscheinlichkeit $p$ per Simulation (also als relative Häufigkeit $h$) ermittelt wurde und sich dabei fälschlicherweise $h = 0.9 \cdot p$ ergeben hat. Der relative Fehler ist dann wie folgt gegeben:
+
In den Teilaufgaben (5) und (6) soll der relative Fehler ermittelt werden, wenn die Symbolwahrscheinlichkeit $p$ per Simulation (also als relative Häufigkeit $h$) ermittelt wurde und sich dabei fälschlicherweise $h = 0.9 \cdot p$ ergeben hat. Der relative Fehler ist dann wie folgt gegeben:
 
:$$\varepsilon_{H} = \frac{H_{\rm bin}(h)- H_{\rm bin}(p)}{H_{\rm bin}(p)}\hspace{0.05cm}.$$
 
:$$\varepsilon_{H} = \frac{H_{\rm bin}(h)- H_{\rm bin}(p)}{H_{\rm bin}(p)}\hspace{0.05cm}.$$
  
Line 29: Line 29:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie hängen <i>H</i><sub>bin</sub>(<i>p</i>) in bit und <i>H'</i><sub> bin</sub>(<i>p</i>) in nat zusammen?
+
{Wie hängen $H_{\rm bin}(p)$ in bit und $H'_{\rm bin}(p)$ in nat zusammen?
 
|type="[]"}
 
|type="[]"}
+ <i>H</i><sub>bin</sub>(<i>p</i>) und <i>H'</i><sub> bin</sub>(<i>p</i>) unterscheiden sich um einen Faktor.
+
+ $H_{\rm bin}(p)$ und $H'_{\rm bin}(p)$ unterscheiden sich um einen Faktor.
- Es gilt <i>H'</i><sub> bin</sub>(<i>p</i>) = <i>H</i><sub>bin</sub>(ln <i>p</i>).
+
- Es gilt $H'_{\rm bin}(p) = H_{\rm bin}(\ln \ p)$.
- Es gilt <i>H'</i><sub> bin</sub>(<i>p</i>) = 1 + <i>H</i><sub>bin</sub>(2 <i>p</i>).
+
- Es gilt $H'_{\rm bin}(p) = 1 + H_{\rm bin}(2 p)$.
  
  
{Zeigen Sie, dass sich das Maximum der binären Entropiefunktion für <i>p</i> = 0.5 ergibt. Wie groß ist <i>H</i><sub>bin</sub>(<i>p</i> = 0.5)?
+
{Zeigen Sie, dass sich das Maximum der binären Entropiefunktion für $p = 0.5$ ergibt. Wie groß ist $H_\text{bin}(p = 0.5)$?
 
|type="{}"}
 
|type="{}"}
$H_\text{bin}(p = 0.5)$ = { 1 3% } $bit$
+
$H_\text{bin}(p = 0.5) \ = $ { 1 } $\ \rm bit$
  
  
{Berechnen Sie den binären Entropiewert für <i>p</i> = 0.05.
+
{Berechnen Sie den binären Entropiewert für $p = 0.05$.
 
|type="{}"}
 
|type="{}"}
$H_\text{bin}(p = 0.05)$ = { 1 3% } $bit$
+
$H_\text{bin}(p = 0.05) \ = $ { 0.286 3% } $\ \rm bit$
  
  
{Geben Sie den größeren der beiden <i>p</i>&ndash;Werte ein, die sich aus der Gleichung <i>H</i><sub>bin</sub>(<i>p</i>) = 0.5 bit ergeben.
+
{Geben Sie den größeren der beiden $p$&ndash;Werte ein, die sich aus der Gleichung $H_\text{bin}(p)= 0.5 \ \rm bit$ ergeben.
 
|type="{}"}
 
|type="{}"}
$p$ = { 0.89 3% }
+
$p \ = $ { 0.89 3% }
  
  
{Durch unzureichende Simulation wurde <i>p</i> = 0.5 um 10% zu niedrig ermittelt. Wie groß ist der prozentuale Fehler hinsichtlich der Entropie?
+
{Durch unzureichende Simulation wurde $p = 0.5$ um $10\%$ zu niedrig ermittelt. Wie groß ist der prozentuale Fehler hinsichtlich der Entropie?
 
|type="{}"}
 
|type="{}"}
$p = 0.45\ statt\ p=0.5:\ \ \epsilon_H$ = - { 0.7 3% } %
+
$p = 0.45\ {\rm statt}\ p=0.5\hspace{-0.1cm}:\ \ \varepsilon_H \ = $ { -0.72--0.68 } $\ \rm \%$
  
  
{Durch unzureichende Simulation wurde <i>p</i> = 0.05 um 10% zu niedrig ermittelt. Wie groß ist der prozentuale Fehler hinsichtlich der Entropie?
+
{Durch unzureichende Simulation wurde $p = 0.05$ um $10\%$ zu niedrig ermittelt. Wie groß ist der prozentuale Fehler hinsichtlich der Entropie?
 
|type="{}"}
 
|type="{}"}
$p = 0.045\ statt\ p=0.05:\ \ \epsilon_H$ = - { 7.3 3% } %
+
$p = 0.045\ {\rm statt}\ p=0.05\hspace{-0.1cm}:\ \ \varepsilon_H \ = $ { -7.44--7.16 } $\ \rm \%$
 
 
  
  

Revision as of 16:33, 25 April 2017

Inf_Z_1_1_vers2.png

Wir betrachten eine Folge von binären Zufallsgrößen mit dem Symbolvorrat $\{ \rm A, \ B \}$   ⇒   $M = 2$. Die Auftrittswahrscheinlichkeiten der beiden Symbole seien $p_{\rm A }= p$ und $p_{\rm B } = 1 - p$.

Die einzelnen Folgenelemente sind statistisch unabhängig. Für die Entropie dieser Nachrichtenquelle gilt gleichermaßen:

$$H_{\rm bin}(p) \hspace{0.1cm} = \hspace{0.1cm} p \cdot {\rm ld}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p\hspace{0.1cm}} + (1-p) \cdot {\rm ld}\hspace{0.1cm}\frac{1}{1-p}\hspace{0.15cm}{\rm in \hspace{0.15cm} [bit]}\hspace{0.05cm},$$
$$ H'_{\rm bin}(p) \hspace{0.1cm} = \hspace{0.1cm} p \cdot {\rm ln}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p\hspace{0.1cm}} + (1-p) \cdot {\rm ln}\hspace{0.1cm}\frac{1}{1-p}\hspace{0.15cm}{\rm in \hspace{0.15cm} [nat]}\hspace{0.05cm}.$$

In diesen Gleichungen werden als Kurzbezeichnungen verwendet:

  • der natürliche Logarithmus   ⇒   $ \ln \ p = \log_{\rm e} \ p$,
  • der Logarithmus dualis   ⇒   ${\rm ld} \ p = \log_2 \ p$.


Die Grafik zeigt diese binäre Entropiefunktion in Abhängigkeit des Parameters $p$, wobei $0 ≤ p ≤ 1$ vorausgesetzt wird.

In den Teilaufgaben (5) und (6) soll der relative Fehler ermittelt werden, wenn die Symbolwahrscheinlichkeit $p$ per Simulation (also als relative Häufigkeit $h$) ermittelt wurde und sich dabei fälschlicherweise $h = 0.9 \cdot p$ ergeben hat. Der relative Fehler ist dann wie folgt gegeben:

$$\varepsilon_{H} = \frac{H_{\rm bin}(h)- H_{\rm bin}(p)}{H_{\rm bin}(p)}\hspace{0.05cm}.$$


Hinweise:


Fragebogen

1

Wie hängen $H_{\rm bin}(p)$ in bit und $H'_{\rm bin}(p)$ in nat zusammen?

$H_{\rm bin}(p)$ und $H'_{\rm bin}(p)$ unterscheiden sich um einen Faktor.
Es gilt $H'_{\rm bin}(p) = H_{\rm bin}(\ln \ p)$.
Es gilt $H'_{\rm bin}(p) = 1 + H_{\rm bin}(2 p)$.

2

Zeigen Sie, dass sich das Maximum der binären Entropiefunktion für $p = 0.5$ ergibt. Wie groß ist $H_\text{bin}(p = 0.5)$?

$H_\text{bin}(p = 0.5) \ = $

$\ \rm bit$

3

Berechnen Sie den binären Entropiewert für $p = 0.05$.

$H_\text{bin}(p = 0.05) \ = $

$\ \rm bit$

4

Geben Sie den größeren der beiden $p$–Werte ein, die sich aus der Gleichung $H_\text{bin}(p)= 0.5 \ \rm bit$ ergeben.

$p \ = $

5

Durch unzureichende Simulation wurde $p = 0.5$ um $10\%$ zu niedrig ermittelt. Wie groß ist der prozentuale Fehler hinsichtlich der Entropie?

$p = 0.45\ {\rm statt}\ p=0.5\hspace{-0.1cm}:\ \ \varepsilon_H \ = $

$\ \rm \%$

6

Durch unzureichende Simulation wurde $p = 0.05$ um $10\%$ zu niedrig ermittelt. Wie groß ist der prozentuale Fehler hinsichtlich der Entropie?

$p = 0.045\ {\rm statt}\ p=0.05\hspace{-0.1cm}:\ \ \varepsilon_H \ = $

$\ \rm \%$


Musterlösung

Hinweis: Aus Platzgründen verwenden wir in der Musterlösung „ld” anstelle von „log2”.
1.  Die Entropiefunktion H' bin(p) lautet entsprechend der Angabe:
$$H'_{\rm bin}(p) \hspace{0.1cm} = \hspace{0.1cm} p \cdot {\rm ln}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p\hspace{0.1cm}} + (1-p) \cdot {\rm ln}\hspace{0.1cm}\frac{1}{1-p} = \\ \hspace{0.1cm} = \hspace{0.1cm} {\rm ln}\hspace{0.1cm}2 \cdot \left [ p \cdot {\rm ld}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p\hspace{0.1cm}} + (1-p) \cdot {\rm ld}\hspace{0.1cm}\frac{1}{1-p}\right ]$$
$$\Rightarrow \hspace{0.3cm} H'_{\rm bin}(p) \hspace{0.15cm}{\rm (in \hspace{0.15cm} nat)}= {\rm ln}\hspace{0.1cm}2 \cdot H_{\rm bin}(p) \hspace{0.15cm}{\rm (in \hspace{0.15cm} bit)} = 0.693\cdot H_{\rm bin}(p)\hspace{0.05cm}.$$
Richtig ist also der erste Lösungsvorschlag. Die beiden weiteren Vorgaben machen keinen Sinn.
2.  Die Optimierungsbedingung lautet dHbin(p)/dp = 0 bzw.
$$\frac{{\rm d}H'_{\rm bin}(p)}{{\rm d}p} \stackrel{!}{=} 0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \frac{\rm d}{{\rm d}p} \left [ - p \cdot {\rm ln}\hspace{0.1cm}p - (1-p) \cdot {\rm ln}\hspace{0.1cm}({1-p})\right ] \stackrel{!}{=} 0$$
$$\Rightarrow \hspace{0.3cm} - {\rm ln}\hspace{0.1cm}p - p \cdot \frac {1}{p}+ {\rm ln}\hspace{0.1cm}(1-p) + (1-p)\cdot \frac {1}{1- p}\stackrel{!}{=} 0$$
$$\Rightarrow \hspace{0.3cm} {\rm ln}\hspace{0.1cm}\frac {1-p}{p}= 0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\frac {1-p}{p}= 1 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \underline { p = 0.5}\hspace{0.05cm}.$$
Die Entropiewerte für p = 0.5 lauten somit:
$$H'_{\rm bin}(p = 0.5) \hspace{0.1cm} = \hspace{0.1cm} -2 \cdot 0.5 \cdot {\rm ln}\hspace{0.1cm}0.5 = {\rm ln}\hspace{0.1cm}2 = 0.693 \, {\rm nat}\hspace{0.05cm},\\ H_{\rm bin}(p = 0.5) \hspace{0.1cm} = \hspace{0.1cm} -2 \cdot 0.5 \cdot {\rm ld}\hspace{0.1cm}0.5 = {\rm ld}\hspace{0.1cm}2 \hspace{0.15cm}\underline {= 1 \, {\rm bit}}\hspace{0.05cm}.$$
3.  Für p = 5% erhält man:
$$H_{\rm bin}(p = 0.05) \hspace{0.1cm} = \hspace{0.1cm} 0.05 \cdot {\rm ld}\hspace{0.1cm}\frac{1}{0.05}+ 0.95 \cdot {\rm ld}\hspace{0.1cm}\frac{1}{0.95}= \\ \hspace{0.1cm} = \hspace{0.1cm} \frac{1}{0.693} \cdot \left [ 0.05 \cdot {\rm ln}\hspace{0.1cm}20+ 0.95 \cdot {\rm ln}\hspace{0.1cm}1.053\right ]= \\ \hspace{0.1cm} = \hspace{0.1cm} \frac{1}{0.693} \cdot \left [ 0.05 \cdot 2.995+ 0.95 \cdot 0.051\right ] \hspace{0.15cm}\underline {\approx 0.286 \, {\rm bit}}\hspace{0.05cm}.$$
4.  Diese Aufgabe lässt sich nicht in geschlossener Form lösen, sondern durch „Probieren”. Eine Lösung liefert das Ergebnis:
$$H_{\rm bin}(p = 0.10) = 0.469 \, {\rm bit}\hspace{0.05cm},\hspace{0.2cm}H_{\rm bin}(p = 0.12) = 0.529 \, {\rm bit}\hspace{0.05cm},\hspace{0.2cm} H_{\rm bin}(p = 0.11) \approx 0.5 \, {\rm bit} $$
$$\Rightarrow \hspace{0.3cm}p_1 \approx 0.11\hspace{0.05cm}. $$
Die zweite (gesuchte) Lösung ergibt sich aus der Symmetrie von Hbin(p) zu p2 = 1 – p1 = 0.89.
5.  Mit p = 0.45 erhält man Hbin(p) = 0.993 bit. Der relative Fehler bezüglich Entropie ist somit
$$\varepsilon_{H} = \frac{H_{\rm bin}(p = 0.45)- H_{\rm bin}(p= 0.5)}{H_{\rm bin}(p = 0.5)}= \frac{0.993- 1}{1}\hspace{0.15cm}\underline {= -0.7 \, {\rm \%}} \hspace{0.05cm}.$$
Das Minuszeichen deutet darauf hin, dass der Entropiewert H = 0.993 zu klein ist. Hätte die Simulation den zu großen Wert p = 0.55 ergeben, so wäre H und auch der relative Fehler genau so groß.
6.   Es gilt Hbin(p = 0.045) = 0.265 bit. Mit dem Ergebnis aus (3) ⇒ Hbin(p = 0.05) = 0.286 bit folgt daraus für den relativen Fehler bezüglich der Entropie:
$$\varepsilon_{H} = \frac{H_{\rm bin}(p = 0.045)- H_{\rm bin}(p= 0.05)}{H_{\rm bin}(p = 0.05)}= \frac{0.265- 0.286}{0.286}\hspace{0.15cm}\underline {= -7.3 \, {\rm \%}} \hspace{0.05cm}.$$
Eine falsche Bestimmung der Symbolwahrscheinlichkeiten um 10% macht sich für p = 0.05 aufgrund des steileren Hbin(p)–Verlaufs deutlich stärker bemerkbar als für p = 0.5. Eine zu große Wahrscheinlichkeit p = 0.055 hätte zu Hbin(p = 0.055) = 0.307 bit geführt und damit zu einer Verfälschung um εH = +7.3%. In diesem Bereich verläuft die Entropiekurve also (mit guter Näherung) linear.