Difference between revisions of "Aufgaben:Exercise 1.1Z: Binary Entropy Function"

From LNTwww
Line 11: Line 11:
 
In diesen Gleichungen werden als Kurzbezeichnungen verwendet:
 
In diesen Gleichungen werden als Kurzbezeichnungen verwendet:
  
* der <i>natürliche</i> Logarithmus &nbsp; &rArr; &nbsp; $ \ln \ p = \log_{\rm e} \ p$,
+
* der <i>natürliche</i> Logarithmus &nbsp; &rArr; &nbsp; $ \ln \hspace{0.05cm} p = \log_{\rm e} \hspace{0.05cm} p$,
* der Logarithmus <i>dualis</i> &nbsp; &rArr; &nbsp; ${\rm ld} \ p = \log_2 \ p$.
+
* der Logarithmus <i>dualis</i> &nbsp; &rArr; &nbsp; ${\rm ld} \hspace{0.05cm} p = \log_2 \hspace{0.05cm} p$.
  
  
Line 65: Line 65:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:<i>Hinweis:</i> Aus Platzgründen verwenden wir in der Musterlösung &bdquo;ld&rdquo; anstelle von  &bdquo;log<sub>2</sub>&rdquo;.
+
<i>Hinweis:</i> Aus Platzgründen verwenden wir in dieser Musterlösung &bdquo;ld&rdquo; anstelle von  &bdquo;log<sub>2</sub>&rdquo;.
  
:<b>1.</b>&nbsp;&nbsp;Die Entropiefunktion <i>H'</i><sub> bin</sub>(<i>p</i>) lautet entsprechend der Angabe:
+
'''(1)'''&nbsp; Richtig ist der <u>erste Lösungsvorschlag</u>. Die beiden weiteren Vorgaben machen keinen Sinn.
:$$H'_{\rm bin}(p) \hspace{0.1cm}  =  \hspace{0.1cm}  p \cdot {\rm ln}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p\hspace{0.1cm}} + (1-p) \cdot {\rm ln}\hspace{0.1cm}\frac{1}{1-p} = \\
+
*Die Entropiefunktion $H'_{\rm bin}(p)$ lautet entsprechend der Angabe:
\hspace{0.1cm}  =  \hspace{0.1cm} {\rm ln}\hspace{0.1cm}2 \cdot \left [ p \cdot {\rm ld}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p\hspace{0.1cm}} + (1-p) \cdot {\rm ld}\hspace{0.1cm}\frac{1}{1-p}\right ]$$
+
:$$H'_{\rm bin}(p) \hspace{0.1cm}  =  \hspace{0.1cm}  p \cdot {\rm ln}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p\hspace{0.1cm}} + (1-p) \cdot {\rm ln}\hspace{0.1cm}\frac{1}{1-p} = {\rm ln}\hspace{0.1cm}2 \cdot \left [ p \cdot {\rm ld}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p\hspace{0.1cm}} + (1-p) \cdot {\rm ld}\hspace{0.1cm}\frac{1}{1-p}\right ]$$
 
:$$\Rightarrow \hspace{0.3cm} H'_{\rm bin}(p) \hspace{0.15cm}{\rm (in \hspace{0.15cm} nat)}=
 
:$$\Rightarrow \hspace{0.3cm} H'_{\rm bin}(p) \hspace{0.15cm}{\rm (in \hspace{0.15cm} nat)}=
 
  {\rm ln}\hspace{0.1cm}2 \cdot H_{\rm bin}(p) \hspace{0.15cm}{\rm (in \hspace{0.15cm} bit)} = 0.693\cdot H_{\rm bin}(p)\hspace{0.05cm}.$$
 
  {\rm ln}\hspace{0.1cm}2 \cdot H_{\rm bin}(p) \hspace{0.15cm}{\rm (in \hspace{0.15cm} bit)} = 0.693\cdot H_{\rm bin}(p)\hspace{0.05cm}.$$
:Richtig ist also der <u>erste Lösungsvorschlag</u>. Die beiden weiteren Vorgaben machen keinen Sinn.
 
  
:<b>2.</b>&nbsp;&nbsp;Die Optimierungsbedingung lautet d<i>H</i><sub>bin</sub>(<i>p</i>)/d<i>p</i> = 0 bzw.
+
'''(2)'''&nbsp; Die Optimierungsbedingung lautet ${\rm d}H_{\rm bin}(p)/{\rm d}p = 0$ bzw.
 
:$$\frac{{\rm d}H'_{\rm bin}(p)}{{\rm d}p} \stackrel{!}{=} 0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \frac{\rm d}{{\rm d}p}
 
:$$\frac{{\rm d}H'_{\rm bin}(p)}{{\rm d}p} \stackrel{!}{=} 0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \frac{\rm d}{{\rm d}p}
 
   \left [ - p \cdot {\rm ln}\hspace{0.1cm}p - (1-p) \cdot {\rm ln}\hspace{0.1cm}({1-p})\right ] \stackrel{!}{=} 0$$
 
   \left [ - p \cdot {\rm ln}\hspace{0.1cm}p - (1-p) \cdot {\rm ln}\hspace{0.1cm}({1-p})\right ] \stackrel{!}{=} 0$$
Line 81: Line 80:
 
:$$\Rightarrow \hspace{0.3cm} {\rm ln}\hspace{0.1cm}\frac {1-p}{p}= 0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\frac {1-p}{p}= 1
 
:$$\Rightarrow \hspace{0.3cm} {\rm ln}\hspace{0.1cm}\frac {1-p}{p}= 0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\frac {1-p}{p}= 1
 
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \underline { p = 0.5}\hspace{0.05cm}.$$
 
  \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \underline { p = 0.5}\hspace{0.05cm}.$$
:Die Entropiewerte für <i>p</i> = 0.5 lauten somit:
+
Die Entropiewerte für $p = 0.5$ lauten somit:
:$$H'_{\rm bin}(p = 0.5) \hspace{0.1cm}  =  \hspace{0.1cm}  -2 \cdot 0.5 \cdot {\rm ln}\hspace{0.1cm}0.5 = {\rm ln}\hspace{0.1cm}2 = 0.693 \, {\rm nat}\hspace{0.05cm},\\
+
:$$H'_{\rm bin}(p = 0.5) \hspace{0.1cm}  =  \hspace{0.1cm}  -2 \cdot 0.5 \cdot {\rm ln}\hspace{0.1cm}0.5 = {\rm ln}\hspace{0.1cm}2 = 0.693 \, {\rm nat}\hspace{0.05cm},$$
  H_{\rm bin}(p = 0.5) \hspace{0.1cm}  =  \hspace{0.1cm}  -2 \cdot 0.5 \cdot {\rm ld}\hspace{0.1cm}0.5 = {\rm ld}\hspace{0.1cm}2 \hspace{0.15cm}\underline {= 1 \, {\rm bit}}\hspace{0.05cm}.$$
+
:$$  H_{\rm bin}(p = 0.5) \hspace{0.1cm}  =  \hspace{0.1cm}  -2 \cdot 0.5 \cdot {\rm ld}\hspace{0.1cm}0.5 = {\rm ld}\hspace{0.1cm}2 \hspace{0.15cm}\underline {= 1 \, {\rm bit}}\hspace{0.05cm}.$$
  
:<b>3.</b>&nbsp;&nbsp;Für <i>p</i> = 5% erhält man:
+
'''(3)'''&nbsp; Für $p = 5\%$ erhält man:
:$$H_{\rm bin}(p = 0.05) \hspace{0.1cm}  =  \hspace{0.1cm}  0.05 \cdot {\rm ld}\hspace{0.1cm}\frac{1}{0.05}+ 0.95 \cdot {\rm ld}\hspace{0.1cm}\frac{1}{0.95}= \\
+
:$$H_{\rm bin}(p = 0.05) \hspace{0.1cm}  =  \hspace{0.1cm}  0.05 \cdot {\rm ld}\hspace{0.1cm}\frac{1}{0.05}+ 0.95 \cdot {\rm ld}\hspace{0.1cm}\frac{1}{0.95}=  \frac{1}{0.693} \cdot \left [ 0.05 \cdot {\rm ln}\hspace{0.1cm}20+ 0.95 \cdot {\rm ln}\hspace{0.1cm}1.053\right ]
\hspace{0.1cm}  \hspace{0.1cm} \frac{1}{0.693} \cdot \left [ 0.05 \cdot {\rm ln}\hspace{0.1cm}20+ 0.95 \cdot {\rm ln}\hspace{0.1cm}1.053\right ]= \\ \hspace{0.1cm}  =  \hspace{0.1cm} \frac{1}{0.693} \cdot \left [ 0.05 \cdot 2.995+ 0.95 \cdot 0.051\right ]
 
 
  \hspace{0.15cm}\underline {\approx 0.286 \, {\rm bit}}\hspace{0.05cm}.$$
 
  \hspace{0.15cm}\underline {\approx 0.286 \, {\rm bit}}\hspace{0.05cm}.$$
  
:<b>4.</b>&nbsp;&nbsp;Diese Aufgabe lässt sich nicht in geschlossener Form lösen, sondern durch &bdquo;Probieren&rdquo;. Eine Lösung liefert das Ergebnis:
+
'''(4)'''&nbsp; Diese Teilaufgabe lässt sich nicht in geschlossener Form lösen, sondern durch &bdquo;Probieren&rdquo;. Eine Lösung liefert das Ergebnis:
 
:$$H_{\rm bin}(p = 0.10) = 0.469 \, {\rm bit}\hspace{0.05cm},\hspace{0.2cm}H_{\rm bin}(p = 0.12) = 0.529 \, {\rm bit}\hspace{0.05cm},\hspace{0.2cm}
 
:$$H_{\rm bin}(p = 0.10) = 0.469 \, {\rm bit}\hspace{0.05cm},\hspace{0.2cm}H_{\rm bin}(p = 0.12) = 0.529 \, {\rm bit}\hspace{0.05cm},\hspace{0.2cm}
  H_{\rm bin}(p = 0.11) \approx 0.5 \, {\rm bit} $$
+
  H_{\rm bin}(p = 0.11) \approx 0.5 \, {\rm bit} \hspace{0.3cm}
:$$\Rightarrow \hspace{0.3cm}p_1 \approx 0.11\hspace{0.05cm}. $$
+
\Rightarrow \hspace{0.3cm}p_1 \approx 0.11\hspace{0.05cm}. $$
:Die zweite (gesuchte) Lösung ergibt sich aus der Symmetrie von  <i>H</i><sub>bin</sub>(<i>p</i>) zu <i>p</i><sub>2</sub> = 1 &ndash; <i>p</i><sub>1</sub> <u>= 0.89</u>.
+
Die zweite (gesuchte) Lösung ergibt sich aus der Symmetrie von  $H_{\rm bin}(p)$ zu $p_2 = 1 -p_1 \hspace{0.15cm}\underline{= 0.89}$.
  
:<b>5.</b>&nbsp;&nbsp;Mit <i>p</i> = 0.45 erhält man <i>H</i><sub>bin</sub>(<i>p</i>) = 0.993 bit. Der relative Fehler bezüglich Entropie ist somit
+
'''(5)'''&nbsp; Mit $p = 0.45$ erhält man $H_{\rm bin}(p) = 0.993\hspace{0.05cm}\rm  bit$. Der relative Fehler bezüglich Entropie ist somit
 
:$$\varepsilon_{H} = \frac{H_{\rm bin}(p = 0.45)- H_{\rm bin}(p= 0.5)}{H_{\rm bin}(p = 0.5)}= \frac{0.993- 1}{1}\hspace{0.15cm}\underline {= -0.7 \, {\rm \%}}
 
:$$\varepsilon_{H} = \frac{H_{\rm bin}(p = 0.45)- H_{\rm bin}(p= 0.5)}{H_{\rm bin}(p = 0.5)}= \frac{0.993- 1}{1}\hspace{0.15cm}\underline {= -0.7 \, {\rm \%}}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
:Das Minuszeichen deutet darauf hin, dass der Entropiewert <i>H</i> = 0.993 zu klein ist. Hätte die Simulation den zu großen Wert <i>p</i> = 0.55 ergeben, so wäre <i>H</i> und auch der relative Fehler genau so groß.
+
Das Minuszeichen deutet darauf hin, dass der Entropiewert $H_{\rm bin}(p) = 0.993\hspace{0.05cm}\rm  bit$ zu klein ist. Hätte die Simulation den zu großen Wert $p = 0.55$ ergeben, so wäre die Entropie und auch der relative Fehler genau so groß.
  
:<b>6.</b>&nbsp;&nbsp; Es gilt <i>H</i><sub>bin</sub>(<i>p</i> = 0.045) = 0.265 bit. Mit dem Ergebnis aus (3) &#8658; <i>H</i><sub>bin</sub>(<i>p</i> = 0.05) = 0.286 bit folgt daraus für den relativen Fehler bezüglich der Entropie:
+
'''(6)'''&nbsp; Es gilt $H_{\rm bin}(p = 0.045) = 0.265\hspace{0.05cm}\rm  bit$. Mit dem Ergebnis der Teilaufgabe (3) &nbsp; &#8658; &nbsp; $H_{\rm bin}(p = 0.05) = 0.286\hspace{0.05cm}\rm  bit$folgt daraus für den relativen Fehler bezüglich der Entropie:
 
:$$\varepsilon_{H} = \frac{H_{\rm bin}(p = 0.045)- H_{\rm bin}(p= 0.05)}{H_{\rm bin}(p = 0.05)}= \frac{0.265- 0.286}{0.286}\hspace{0.15cm}\underline {= -7.3 \, {\rm \%}}
 
:$$\varepsilon_{H} = \frac{H_{\rm bin}(p = 0.045)- H_{\rm bin}(p= 0.05)}{H_{\rm bin}(p = 0.05)}= \frac{0.265- 0.286}{0.286}\hspace{0.15cm}\underline {= -7.3 \, {\rm \%}}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
:Eine falsche Bestimmung der Symbolwahrscheinlichkeiten um 10% macht sich für <i>p</i> = 0.05 aufgrund des steileren <i>H</i><sub>bin</sub>(<i>p</i>)&ndash;Verlaufs deutlich stärker bemerkbar als für <i>p</i> = 0.5. Eine zu große Wahrscheinlichkeit <i>p</i> = 0.055 hätte zu <i>H</i><sub>bin</sub>(<i>p</i> = 0.055) = 0.307 bit geführt und damit zu einer Verfälschung um <i>&epsilon;<sub>H</sub></i> = +7.3%. In diesem Bereich verläuft die Entropiekurve also (mit guter Näherung) linear.
+
Das Ergebnis zeigt:  
 +
*Eine falsche Bestimmung der Symbolwahrscheinlichkeiten um $10\%$ macht sich für $p = 0.05$ aufgrund des steileren $H_{\rm bin}(p)$&ndash;Verlaufs deutlich stärker bemerkbar als für $p = 0.5$.  
 +
*Eine zu große Wahrscheinlichkeit $p = 0.055$ hätte zu $H_{\rm bin}(p = 0.055) = 0.307\hspace{0.05cm}\rm  bit$ geführt und damit zu einer Verfälschung um $\varepsilon_H = +7.3\%$. In diesem Bereich verläuft die Entropiekurve also (mit guter Näherung) linear.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 16:59, 25 April 2017

Inf_Z_1_1_vers2.png

Wir betrachten eine Folge von binären Zufallsgrößen mit dem Symbolvorrat $\{ \rm A, \ B \}$   ⇒   $M = 2$. Die Auftrittswahrscheinlichkeiten der beiden Symbole seien $p_{\rm A }= p$ und $p_{\rm B } = 1 - p$.

Die einzelnen Folgenelemente sind statistisch unabhängig. Für die Entropie dieser Nachrichtenquelle gilt gleichermaßen:

$$H_{\rm bin}(p) \hspace{0.1cm} = \hspace{0.1cm} p \cdot {\rm ld}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p\hspace{0.1cm}} + (1-p) \cdot {\rm ld}\hspace{0.1cm}\frac{1}{1-p}\hspace{0.15cm}{\rm in \hspace{0.15cm} [bit]}\hspace{0.05cm},$$
$$ H'_{\rm bin}(p) \hspace{0.1cm} = \hspace{0.1cm} p \cdot {\rm ln}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p\hspace{0.1cm}} + (1-p) \cdot {\rm ln}\hspace{0.1cm}\frac{1}{1-p}\hspace{0.15cm}{\rm in \hspace{0.15cm} [nat]}\hspace{0.05cm}.$$

In diesen Gleichungen werden als Kurzbezeichnungen verwendet:

  • der natürliche Logarithmus   ⇒   $ \ln \hspace{0.05cm} p = \log_{\rm e} \hspace{0.05cm} p$,
  • der Logarithmus dualis   ⇒   ${\rm ld} \hspace{0.05cm} p = \log_2 \hspace{0.05cm} p$.


Die Grafik zeigt diese binäre Entropiefunktion in Abhängigkeit des Parameters $p$, wobei $0 ≤ p ≤ 1$ vorausgesetzt wird.

In den Teilaufgaben (5) und (6) soll der relative Fehler ermittelt werden, wenn die Symbolwahrscheinlichkeit $p$ per Simulation (also als relative Häufigkeit $h$) ermittelt wurde und sich dabei fälschlicherweise $h = 0.9 \cdot p$ ergeben hat. Der relative Fehler ist dann wie folgt gegeben:

$$\varepsilon_{H} = \frac{H_{\rm bin}(h)- H_{\rm bin}(p)}{H_{\rm bin}(p)}\hspace{0.05cm}.$$


Hinweise:


Fragebogen

1

Wie hängen $H_{\rm bin}(p)$ in bit und $H'_{\rm bin}(p)$ in nat zusammen?

$H_{\rm bin}(p)$ und $H'_{\rm bin}(p)$ unterscheiden sich um einen Faktor.
Es gilt $H'_{\rm bin}(p) = H_{\rm bin}(\ln \ p)$.
Es gilt $H'_{\rm bin}(p) = 1 + H_{\rm bin}(2 p)$.

2

Zeigen Sie, dass sich das Maximum der binären Entropiefunktion für $p = 0.5$ ergibt. Wie groß ist $H_\text{bin}(p = 0.5)$?

$H_\text{bin}(p = 0.5) \ = $

$\ \rm bit$

3

Berechnen Sie den binären Entropiewert für $p = 0.05$.

$H_\text{bin}(p = 0.05) \ = $

$\ \rm bit$

4

Geben Sie den größeren der beiden $p$–Werte ein, die sich aus der Gleichung $H_\text{bin}(p)= 0.5 \ \rm bit$ ergeben.

$p \ = $

5

Durch unzureichende Simulation wurde $p = 0.5$ um $10\%$ zu niedrig ermittelt. Wie groß ist der prozentuale Fehler hinsichtlich der Entropie?

$p = 0.45\ {\rm statt}\ p=0.5\hspace{-0.1cm}:\ \ \varepsilon_H \ = $

$\ \rm \%$

6

Durch unzureichende Simulation wurde $p = 0.05$ um $10\%$ zu niedrig ermittelt. Wie groß ist der prozentuale Fehler hinsichtlich der Entropie?

$p = 0.045\ {\rm statt}\ p=0.05\hspace{-0.1cm}:\ \ \varepsilon_H \ = $

$\ \rm \%$


Musterlösung

Hinweis: Aus Platzgründen verwenden wir in dieser Musterlösung „ld” anstelle von „log2”.

(1)  Richtig ist der erste Lösungsvorschlag. Die beiden weiteren Vorgaben machen keinen Sinn.

  • Die Entropiefunktion $H'_{\rm bin}(p)$ lautet entsprechend der Angabe:
$$H'_{\rm bin}(p) \hspace{0.1cm} = \hspace{0.1cm} p \cdot {\rm ln}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p\hspace{0.1cm}} + (1-p) \cdot {\rm ln}\hspace{0.1cm}\frac{1}{1-p} = {\rm ln}\hspace{0.1cm}2 \cdot \left [ p \cdot {\rm ld}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p\hspace{0.1cm}} + (1-p) \cdot {\rm ld}\hspace{0.1cm}\frac{1}{1-p}\right ]$$
$$\Rightarrow \hspace{0.3cm} H'_{\rm bin}(p) \hspace{0.15cm}{\rm (in \hspace{0.15cm} nat)}= {\rm ln}\hspace{0.1cm}2 \cdot H_{\rm bin}(p) \hspace{0.15cm}{\rm (in \hspace{0.15cm} bit)} = 0.693\cdot H_{\rm bin}(p)\hspace{0.05cm}.$$

(2)  Die Optimierungsbedingung lautet ${\rm d}H_{\rm bin}(p)/{\rm d}p = 0$ bzw.

$$\frac{{\rm d}H'_{\rm bin}(p)}{{\rm d}p} \stackrel{!}{=} 0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \frac{\rm d}{{\rm d}p} \left [ - p \cdot {\rm ln}\hspace{0.1cm}p - (1-p) \cdot {\rm ln}\hspace{0.1cm}({1-p})\right ] \stackrel{!}{=} 0$$
$$\Rightarrow \hspace{0.3cm} - {\rm ln}\hspace{0.1cm}p - p \cdot \frac {1}{p}+ {\rm ln}\hspace{0.1cm}(1-p) + (1-p)\cdot \frac {1}{1- p}\stackrel{!}{=} 0$$
$$\Rightarrow \hspace{0.3cm} {\rm ln}\hspace{0.1cm}\frac {1-p}{p}= 0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\frac {1-p}{p}= 1 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \underline { p = 0.5}\hspace{0.05cm}.$$

Die Entropiewerte für $p = 0.5$ lauten somit:

$$H'_{\rm bin}(p = 0.5) \hspace{0.1cm} = \hspace{0.1cm} -2 \cdot 0.5 \cdot {\rm ln}\hspace{0.1cm}0.5 = {\rm ln}\hspace{0.1cm}2 = 0.693 \, {\rm nat}\hspace{0.05cm},$$
$$ H_{\rm bin}(p = 0.5) \hspace{0.1cm} = \hspace{0.1cm} -2 \cdot 0.5 \cdot {\rm ld}\hspace{0.1cm}0.5 = {\rm ld}\hspace{0.1cm}2 \hspace{0.15cm}\underline {= 1 \, {\rm bit}}\hspace{0.05cm}.$$

(3)  Für $p = 5\%$ erhält man:

$$H_{\rm bin}(p = 0.05) \hspace{0.1cm} = \hspace{0.1cm} 0.05 \cdot {\rm ld}\hspace{0.1cm}\frac{1}{0.05}+ 0.95 \cdot {\rm ld}\hspace{0.1cm}\frac{1}{0.95}= \frac{1}{0.693} \cdot \left [ 0.05 \cdot {\rm ln}\hspace{0.1cm}20+ 0.95 \cdot {\rm ln}\hspace{0.1cm}1.053\right ] \hspace{0.15cm}\underline {\approx 0.286 \, {\rm bit}}\hspace{0.05cm}.$$

(4)  Diese Teilaufgabe lässt sich nicht in geschlossener Form lösen, sondern durch „Probieren”. Eine Lösung liefert das Ergebnis:

$$H_{\rm bin}(p = 0.10) = 0.469 \, {\rm bit}\hspace{0.05cm},\hspace{0.2cm}H_{\rm bin}(p = 0.12) = 0.529 \, {\rm bit}\hspace{0.05cm},\hspace{0.2cm} H_{\rm bin}(p = 0.11) \approx 0.5 \, {\rm bit} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}p_1 \approx 0.11\hspace{0.05cm}. $$

Die zweite (gesuchte) Lösung ergibt sich aus der Symmetrie von $H_{\rm bin}(p)$ zu $p_2 = 1 -p_1 \hspace{0.15cm}\underline{= 0.89}$.

(5)  Mit $p = 0.45$ erhält man $H_{\rm bin}(p) = 0.993\hspace{0.05cm}\rm bit$. Der relative Fehler bezüglich Entropie ist somit

$$\varepsilon_{H} = \frac{H_{\rm bin}(p = 0.45)- H_{\rm bin}(p= 0.5)}{H_{\rm bin}(p = 0.5)}= \frac{0.993- 1}{1}\hspace{0.15cm}\underline {= -0.7 \, {\rm \%}} \hspace{0.05cm}.$$

Das Minuszeichen deutet darauf hin, dass der Entropiewert $H_{\rm bin}(p) = 0.993\hspace{0.05cm}\rm bit$ zu klein ist. Hätte die Simulation den zu großen Wert $p = 0.55$ ergeben, so wäre die Entropie und auch der relative Fehler genau so groß.

(6)  Es gilt $H_{\rm bin}(p = 0.045) = 0.265\hspace{0.05cm}\rm bit$. Mit dem Ergebnis der Teilaufgabe (3)   ⇒   $H_{\rm bin}(p = 0.05) = 0.286\hspace{0.05cm}\rm bit$folgt daraus für den relativen Fehler bezüglich der Entropie:

$$\varepsilon_{H} = \frac{H_{\rm bin}(p = 0.045)- H_{\rm bin}(p= 0.05)}{H_{\rm bin}(p = 0.05)}= \frac{0.265- 0.286}{0.286}\hspace{0.15cm}\underline {= -7.3 \, {\rm \%}} \hspace{0.05cm}.$$

Das Ergebnis zeigt:

  • Eine falsche Bestimmung der Symbolwahrscheinlichkeiten um $10\%$ macht sich für $p = 0.05$ aufgrund des steileren $H_{\rm bin}(p)$–Verlaufs deutlich stärker bemerkbar als für $p = 0.5$.
  • Eine zu große Wahrscheinlichkeit $p = 0.055$ hätte zu $H_{\rm bin}(p = 0.055) = 0.307\hspace{0.05cm}\rm bit$ geführt und damit zu einer Verfälschung um $\varepsilon_H = +7.3\%$. In diesem Bereich verläuft die Entropiekurve also (mit guter Näherung) linear.