Difference between revisions of "Aufgaben:Exercise 1.1Z: Low-Pass Filter of 1st and 2nd Order"

From LNTwww
Line 6: Line 6:
 
This is then referred to as a first-order low-pass filter. The diagram shows the following for this filter
 
This is then referred to as a first-order low-pass filter. The diagram shows the following for this filter
 
* above the ''damping curve''  $a_1(f)$,  
 
* above the ''damping curve''  $a_1(f)$,  
* below the ''phase curve''  $b_1(f)$.
+
* below the ''phase response''  $b_1(f)$.
  
  
Line 15: Line 15:
 
In this task,   
 
In this task,   
 
*based on the functions  $a_1(f)$  and  $b_1(f)$  of the low-pass filter of first order
 
*based on the functions  $a_1(f)$  and  $b_1(f)$  of the low-pass filter of first order
*the damping– and phase curves of a low-pass filter of higher order is to be analysed.  
+
*the damping curve and phase response of a low-pass filter of higher order is to be analysed.  
  
  
Line 46: Line 46:
  
  
{Compute the phase response&nbsp; $b_1(f)$. <br>Welche Werte in Radian (rad) erhält man bei&nbsp; $f = f_0$&nbsp; und&nbsp; $f = 2f_0$?
+
{Compute the phase response&nbsp; $b_1(f)$. <br>What values in radian (rad) are obtained for&nbsp; $f = f_0$&nbsp; and&nbsp; $f = 2f_0$?
 
|type="{}"}
 
|type="{}"}
 
$b_1(f = f_0)\ = \ $  { 0.786 5% } &nbsp;$\text{rad}$
 
$b_1(f = f_0)\ = \ $  { 0.786 5% } &nbsp;$\text{rad}$
Line 52: Line 52:
  
  
{Welchen Dämpfungsverlauf&nbsp; $a_n(f)$&nbsp; hat ein Tiefpass&nbsp; $n$–ter Ordnung? <br>Welche&nbsp; $\rm dB$–Werte erhält man mit&nbsp; $n = 2$&nbsp; für&nbsp; $f = f_0$&nbsp; bzw.&nbsp; $f = \: –2f_0$?
+
{What is the damping curve&nbsp; $a_n(f)$&nbsp; of a low-pass filter of&nbsp; $n$–th order? <br>What&nbsp; $\rm dB$–values are obtained for&nbsp; $n = 2$&nbsp; for&nbsp; $f = f_0$&nbsp; or&nbsp; $f = \: –2f_0$?
 
|type="{}"}
 
|type="{}"}
 
$a_2(f = f_0)\ = \ $  { 6.02 5% } &nbsp;$\text{dB}$
 
$a_2(f = f_0)\ = \ $  { 6.02 5% } &nbsp;$\text{dB}$
Line 58: Line 58:
  
  
{Berechnen Sie die Phasenfunktion&nbsp; $b_2(f)$&nbsp; eines Tiefpasses zweiter Ordnung. <br>Welche Werte (in Radian) erhält man für&nbsp; $f = f_0$&nbsp; und&nbsp; $f = \: –2f_0$?
+
{Compute the phase function&nbsp; $b_2(f)$&nbsp; of a low-pass filter of second order. <br>What values (in Radian) are obtained for&nbsp; $f = f_0$&nbsp; and&nbsp; $f = \: –2f_0$?
 
|type="{}"}
 
|type="{}"}
 
$b_2(f = f_0)\ = \ $  { 1.571 5% } &nbsp;$\text{rad}$
 
$b_2(f = f_0)\ = \ $  { 1.571 5% } &nbsp;$\text{rad}$
Line 70: Line 70:
 
===Sample solution===
 
===Sample solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Der Amplitudengang des Tiefpasses erster Ordnung lautet:
+
'''(1)'''&nbsp; The amplitude response of the low-pass filter of first order is:
 
:$$|H_{\rm 1}(f)| = \frac{1}{\sqrt{1+ (f/f_0)^2}}.$$
 
:$$|H_{\rm 1}(f)| = \frac{1}{\sqrt{1+ (f/f_0)^2}}.$$
 
*Damit erhält man den Dämpfungsverlauf in Neper (Np):  
 
*Damit erhält man den Dämpfungsverlauf in Neper (Np):  

Revision as of 16:52, 28 June 2021

Damping– & phase function

The simplest form of a low-pass filter – for example, realisable as an RC low-pass filter according to  exercise 1.1  – has the following frequency response:

$$H_{\rm 1}(f) = \frac{1}{1+{\rm j}\cdot f/f_0}.$$

This is then referred to as a first-order low-pass filter. The diagram shows the following for this filter

  • above the damping curve  $a_1(f)$,
  • below the phase response  $b_1(f)$.


Correspondingly, for a low-pass filter of  $n$–th order, the following defining equation applies:

$$H_n(f) = H_{\rm 1}(f)^n.$$


In this task,

  • based on the functions  $a_1(f)$  and  $b_1(f)$  of the low-pass filter of first order
  • the damping curve and phase response of a low-pass filter of higher order is to be analysed.


In general, the following holds:

$$H(f) = {\rm e}^{-a(f) - {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}b(f)}.$$




Please note:

  • There is the following relationship between the Np- and dB-values of an amplitude value  $|H| = 1/x$ :
$$a_{\rm Np} = \ln (x) = \ln (10) \cdot \lg (x) = \frac{\ln (10)}{20} \cdot a_{\rm dB} \approx 0.11513 \cdot a_{\rm dB}.$$
  • Further consider that for two complex quantities  $z_1$  and  $z_2$  the following equations hold:
$$|z_1 \cdot z_2| = |z_1| \cdot |z_2|, \hspace{0.5 cm}{\rm arc}\hspace{0.05 cm}(z_1 \cdot z_2) = {\rm arc}\hspace{0.05 cm}(z_1) + {\rm arc}\hspace{0.05 cm}(z_2).$$


Questions

1

Compute the damping curve  $a_1(f)$  of a low-pass filter of first order in  $\rm dB$.
What  $\rm dB$–values are obtained for  $f = f_0$  and  $f = 2f_0$?

$a_1(f = f_0)\ = \ $

 $\text{dB}$
$a_1(f = 2f_0)\ = \ $

 $\text{dB}$

2

Compute the phase response  $b_1(f)$.
What values in radian (rad) are obtained for  $f = f_0$  and  $f = 2f_0$?

$b_1(f = f_0)\ = \ $

 $\text{rad}$
$b_1(f = 2f_0)\ = \ $

 $\text{rad}$

3

What is the damping curve  $a_n(f)$  of a low-pass filter of  $n$–th order?
What  $\rm dB$–values are obtained for  $n = 2$  for  $f = f_0$  or  $f = \: –2f_0$?

$a_2(f = f_0)\ = \ $

 $\text{dB}$
$a_2(f = -2f_0)\ = \ $

 $\text{dB}$

4

Compute the phase function  $b_2(f)$  of a low-pass filter of second order.
What values (in Radian) are obtained for  $f = f_0$  and  $f = \: –2f_0$?

$b_2(f = f_0)\ = \ $

 $\text{rad}$
$b_2(f = -2f_0)\ = \ $

 $\text{rad}$


Sample solution

(1)  The amplitude response of the low-pass filter of first order is:

$$|H_{\rm 1}(f)| = \frac{1}{\sqrt{1+ (f/f_0)^2}}.$$
  • Damit erhält man den Dämpfungsverlauf in Neper (Np):
$$a_1(f) = \ln \frac{1}{|H_1(f)|} = {1}/{2} \cdot \ln \left[1 + ({f}/{f_0})^2 \right] \Rightarrow a_1(f = f_0) = 0.3466 \hspace{0.1 cm}{\rm Np},\hspace{0.5 cm}a_1(f = 2 f_0) = 0.8047 \hspace{0.1 cm}{\rm Np}.$$

Die entsprechenden dB–Werte erhält man durch Multiplikation mit  $1/0.11513 = 8.68589$  und führt zu den Ergebnissen

  • $ \underline{3.01 \: {\rm dB} ≈ 3 \: {\rm dB}}$  für  $ f = f_0$,
  • $ \underline{6.99 \: {\rm dB}}$  für  $ f = 2f_0$.


Beim Tiefpass erster Ordnung beträgt somit die 3dB–Grenzfrequenz  $f_{\rm G} = f_0$.


(2)  Der Frequenzgang  $H_1(f)$  kann auch nach Real– und Imaginärteil getrennt dargestellt werden:

$$H_{\rm 1}(f) = \frac{1}{ {1+ (f/f_0)^2} } - {\rm j} \cdot \frac{f/f_0}{ {1+ (f/f_0)^2} }.$$
  • Damit ergibt sich für den Phasengang:
$$b_1(f) = - \arctan \hspace{0.1cm} ( {\rm Im} /{\rm Re} ) = \arctan \hspace{0.1cm} ({f}/{f_0}).$$
  • Für  $f = f_0$  erhält man  $\arctan(1) = π/4 \rm \underline{\: = 0.786 \: rad}$, und für  $f = 2f_0$  den Wert  $\arctan(2) \rm \underline{\: = 1.108 \: rad}$.


(3)  Für den Amplitudengang eines Tiefpasses  $n$–ter Ordnung gilt:

$$|H_n(f)| = |H_{\rm 1}(f)|^n.$$

Bezüglich der (logarithmischen) Dämpfungsfunktion wird aus der  $n$–fachen Multiplikation die  $n$–fache Summe:

$$a_n(f) = n \cdot a_1(f)= {n}/{2} \cdot \ln \left[ 1 + ({f}/{f_0})^2 \right].$$

Für den Tiefpass zweiter Ordnung ergibt sich daraus als Sonderfall:

$$a_2(f) = \ln \left[ 1 + ({f}/{f_0})^2 \right]= 2 \cdot a_1(f).$$

Die dB–Werte lauten nun:

  • $ \underline{6.02 \: {\rm dB} ≈ 6 \: {\rm dB}}$  für  $f = ±f_0$,
  • $\rm \underline{13.98 \: {\rm dB} ≈ 14 \: {\rm dB}}$  für  $f = ±2f_0$.


Damit ist offensichtlich, dass für  $n > 1$  der Parameter  $f_0$  nicht mehr die 3 dB–Grenzfrequenz $f_{\rm G}$ angibt.
Für  $n = 2$   ⇒   "Tiefpass zweiter Ordnung" gilt vielmehr der Zusammenhang:  

$${f_{\rm G} } = {f_0}/\sqrt{2}.$$


(4)  Auch bezüglich der Phasenfunktion gilt:

$$b_n(f) = n \cdot b_1(f), \hspace{0.3 cm} b_2(f) = 2 \cdot b_1(f).$$

Beim Tiefpass zweiter Ordnung sind somit alle Phasenwerte zwischen  $±π$  möglich. Insbesondere ist

  • $b_2(f = f_0) = π/2 \rm \underline{\: = 1.571 \: rad}$,
  • $b_2(f = 2f_0) = \rm 2.216 \: rad$.


Da die Phase eine ungerade Funktion ist, gilt hier:   $b_2(f = \: –2f_0) = \rm \underline{–2.216 \: rad}$.