Difference between revisions of "Aufgaben:Exercise 1.1Z: Low-Pass Filter of 1st and 2nd Order"

From LNTwww
m (Text replacement - "analyse" to "analyze")
 
(44 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Lineare zeitinvariante Systeme/Systembeschreibung im Frequenzbereich}}
+
{{quiz-Header|Buchseite=Linear_and_Time_Invariant_Systems/System_Description_in_Frequency_Domain}}
==Z1.1 Tiefpass 1. und 2. Ordnung==
+
[[File:P_ID785__LZI_Z_1_1.png|Damping– & phase function|right|frame]]
[[File:P_ID785__LZI_Z_1_1.png|Dämpfungs– und Phasenfunktion|right]]
+
The simplest form of a low-pass filter for example, realisable as an RC low-pass filter according to  [[Aufgaben:Exercise_1.1:_Simple_Filter_Functions|Exercise 1.1]]  has the following frequency response:
Die einfachste Form eines Tiefpasses zum Beispiel realisierbar als ein RC–Tiefpass entsprechend [[Aufgaben:1.1_Einfache_Filterfunktionen|Aufgabe A1.1]] – hat folgenden Frequenzgang:
+
:$$H_{\rm 1}(f) = \frac{1}{1+{\rm j}\cdot f/f_0}.$$
$$H_{\rm 1}(f) = \frac{1}{1+{\rm j}\cdot f/f_0}.$$
+
This is then referred to as a low-pass filter of first order. The diagram shows the following for this filter
Man spricht dann von einem Tiefpass erster Ordnung. In der Grafik dargestellt sind für dieses Filter
+
* above the  "damping curve"  $a_1(f)$,  
* oben der Dämpfungsverlauf $a_1(f)$,  
+
* below the  "phase response"  $b_1(f)$.
* unten der ''Phasenverlauf'' $b_1(f)$ .
 
  
Entsprechend gilt für einen Tiefpass $n$–ter Ordnung die folgende Definitionsgleichung:
 
$$H_n(f) = H_{\rm 1}(f)^n.$$
 
In dieser Aufgabe sollen – ausgehend von den Funktionen $a_1(f)$ und $b_1(f)$ für den Tiefpass erster Ordnung – der Dämpfungs– und Phasenverlauf eines Tiefpasses höherer Ordnung analysiert werden. Allgemein gilt:
 
$$H(f) = {\rm e}^{-a(f) - {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}b(f)}.$$
 
  
 +
Correspondingly, for a low-pass filter of  $n$–th order the following defining equation applies:
 +
:$$H_n(f) = H_{\rm 1}(f)^n.$$
  
''Hinweise:''  
+
 
*Die Aufgabe gehört zum  Kapitel [[Lineare_zeitinvariante_Systeme/Systembeschreibung_im_Frequenzbereich | Systembeschreibung im Frequenzbereich]].
+
In this task, 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
+
*based on the functions  $a_1(f)$  and  $b_1(f)$  of the low-pass filter of first order
*Zwischen dem Np– und dem dB–Wert eines Amplitudenwertes $|H| = 1/x$ besteht folgender Zusammenhang:
+
*the damping curve and phase response of a low-pass filter of higher order is to be analyzed.
$$a_{\rm Np} = \ln (x) = \ln (10) \cdot \lg (x) = \frac{\ln
+
 
 +
 
 +
In general, the following holds:
 +
:$$H(f) = {\rm e}^{-a(f) - {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}b(f)}.$$
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
''Hint:''  
 +
*The exercise belongs to the chapter  [[Linear_and_Time_Invariant_Systems/System_Description_in_Frequency_Domain | System Description in Frequency Domain]].
 +
 +
*There is the following relationship between the Np- and dB-values of an amplitude value  $|H| = 1/x$ :
 +
:$$a_{\rm Np} = \ln (x) = \ln (10) \cdot \lg (x) = \frac{\ln
 
(10)}{20} \cdot a_{\rm dB} \approx 0.11513 \cdot a_{\rm dB}.$$
 
(10)}{20} \cdot a_{\rm dB} \approx 0.11513 \cdot a_{\rm dB}.$$
*Berücksichtigen Sie weiter, dass für zwei komplexe Größen $z_1$ und $z_2$ folgende Gleichungen gelten:
+
*Further consider that for two complex quantities  $z_1$  and  $z_2$  the following equations hold:
$$|z_1 \cdot z_2| = |z_1| \cdot |z_2|, \hspace{0.5 cm}{\rm arc}\hspace{0.05 cm}(z_1 \cdot z_2) = {\rm arc}\hspace{0.05 cm}(z_1) + {\rm arc}\hspace{0.05 cm}(z_2).$$
+
:$$|z_1 \cdot z_2| = |z_1| \cdot |z_2|, \hspace{0.5 cm}{\rm arc}\hspace{0.05 cm}(z_1 \cdot z_2) = {\rm arc}\hspace{0.05 cm}(z_1) + {\rm arc}\hspace{0.05 cm}(z_2).$$
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie den Dämpfungsverlauf $a_1(f)$ eines Tiefpasses erster Ordnung in dB. Welche dB–Werte ergeben sich bei $f = f_0$ und $f = 2f_0$?
+
{Compute the damping curve&nbsp; $a_1(f)$&nbsp; of a low-pass filter of first order in&nbsp; $\rm dB$. <br>What&nbsp; $\rm dB$&nbsp; values are obtained for&nbsp; $f = f_0$&nbsp; and&nbsp; $f = 2f_0$?
 
|type="{}"}
 
|type="{}"}
$a_1(f = f_0)$ &nbsp;= { 3.01 5% } &nbsp;$\text{dB}$
+
$a_1(f = f_0)\ = \ $ { 3.01 5% } &nbsp;$\text{dB}$
$a_1(f = 2f_0)$ &nbsp;= { 6.99 5% } &nbsp;$\text{dB}$
+
$a_1(f = 2f_0)\ = \ $ { 6.99 5% } &nbsp;$\text{dB}$
  
  
{Berechnen Sie den Phasenverlauf $b_1(f)$. Welche Werte in Radian (rad) erhält man bei $f = f_0$ und $f = 2f_0$?
+
{Compute the phase response&nbsp; $b_1(f)$. <br>What values in radian (rad) are obtained for&nbsp; $f = f_0$&nbsp; and&nbsp; $f = 2f_0$?
 
|type="{}"}
 
|type="{}"}
$b_1(f = f_0)$ &nbsp;= { 0.786 5% } &nbsp;$\text{rad}$
+
$b_1(f = f_0)\ = \ $ { 0.786 5% } &nbsp;$\text{rad}$
$b_1(f = 2f_0)$ &nbsp;= { 1.108 5% } &nbsp;$\text{rad}$
+
$b_1(f = 2f_0)\ = \ $ { 1.108 5% } &nbsp;$\text{rad}$
  
  
{Welchen Dämpfungsverlauf $a_n(f)$ hat ein Tiefpass $n$–ter Ordnung? Welche dB–Werte erhält man mit $n = 2$ für $f = f_0$ bzw. $f = \: –2f_0$?
+
{What is the damping curve&nbsp; $a_n(f)$&nbsp; of a low-pass filter of&nbsp; $n$–th order? <br>What&nbsp; $\rm dB$&nbsp; values are obtained for&nbsp; $n = 2$&nbsp; for&nbsp; $f = f_0$&nbsp; or&nbsp; $f = \: –2f_0$?
 
|type="{}"}
 
|type="{}"}
$a_2(f = f_0)$ &nbsp;= { 6.02 5% } &nbsp;$\text{dB}$
+
$a_2(f = f_0)\ = \ $ { 6.02 5% } &nbsp;$\text{dB}$
$a_2(f = -2f_0)$ &nbsp;= { 13.98 5% } &nbsp;$\text{dB}$
+
$a_2(f = -2f_0)\ = \ $ { 13.98 5% } &nbsp;$\text{dB}$
  
  
{Berechnen Sie die Phasenfunktion $b_2(f)$ eines Tiefpasses zweiter Ordnung. Welche Werte (in Radian) erhält man für $f = f_0$ und $f = \: –2f_0$?
+
{Compute the phase function&nbsp; $b_2(f)$&nbsp; of a low-pass filter of second order. <br>What values (in radian) are obtained for&nbsp; $f = f_0$&nbsp; and&nbsp; $f = \: –2f_0$?
 
|type="{}"}
 
|type="{}"}
$b_2(f = f_0)$ &nbsp;= { 1.571 5% } &nbsp;$\text{rad}$
+
$b_2(f = f_0)\ = \ $ { 1.571 5% } &nbsp;$\text{rad}$
$b_2(f = -2f_0)$ &nbsp;= { -2.22--2.21 } &nbsp;$\text{rad}$
+
$b_2(f = -2f_0)\ = \ $ { -2.23--2.20 } &nbsp;$\text{rad}$
  
  
Line 57: Line 68:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Der Amplitudengang des Tiefpasses erster Ordnung lautet:
+
'''(1)'''&nbsp; The amplitude response of the low-pass filter of first order is:
$$|H_{\rm 1}(f)| = \frac{1}{\sqrt{1+ (f/f_0)^2}}.$$
+
:$$|H_{\rm 1}(f)| = \frac{1}{\sqrt{1+ (f/f_0)^2}}.$$
Damit erhält man den Dämpfungsverlauf in Neper:  
+
*This gives the damping curve in Neper (Np):  
$$\begin{align*}a_1(f) = \ln \frac{1}{|H_1(f)|} & = {1}/{2} \cdot \ln \left[1 + ({f}/{f_0})^2 \right] \\ \Rightarrow a_1(f = f_0) & = 0.34657 \hspace{0.1 cm}{\rm Np},\hspace{0.5 cm}a_1(f = 2 f_0) =
+
:$$a_1(f) = \ln \frac{1}{|H_1(f)|} = {1}/{2} \cdot \ln \left[1 + ({f}/{f_0})^2 \right] \Rightarrow a_1(f = f_0) = 0.3466 \hspace{0.1 cm}{\rm Np},\hspace{0.5 cm}a_1(f = 2 f_0) = 0.8047 \hspace{0.1 cm}{\rm Np}.$$
0.804719 \hspace{0.1 cm}{\rm Np}.\end{align*}$$
+
The corresponding dB values are obtained by multiplying by&nbsp;  $1/0.11513 = 8.68589$&nbsp; and result in
Die entsprechenden dB–Werte erhält man durch Multiplikation mit 1/0.11513 = 8.68589 und führt zu den Ergebnissen $ \underline{3.01 \: {\rm dB} ≈ 3 \: {\rm dB}}$ für $ f = f_0$ und $ \underline{6.99 \: {\rm dB}}$ für $ f = 2f_0$. Beim Tiefpass erster Ordnung beträgt somit die 3dB–Grenzfrequenz $f_{\rm G} = f_0$.  
+
*$ \underline{3.01 \: {\rm dB} ≈ 3 \: {\rm dB}}$&nbsp; für&nbsp; $ f = f_0$,
 +
*$ \underline{6.99 \: {\rm dB}}$&nbsp; für&nbsp; $ f = 2f_0$.  
 +
 
 +
 
 +
Thus, for the low-pass filter of first order the 3dB cut-off frequency is &nbsp; $f_{\rm G} = f_0$.
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; The frequency response&nbsp; $H_1(f)$&nbsp; can also be represented separately by thr real and the imaginary part:
 +
:$$H_{\rm 1}(f) = \frac{1}{ {1+ (f/f_0)^2} } - {\rm j} \cdot \frac{f/f_0}{ {1+ (f/f_0)^2} }.$$
 +
*Hence, the following holds for the phase response:
 +
:$$b_1(f) = - \arctan \hspace{0.1cm} ( {\rm Im} /{\rm Re} ) = \arctan \hspace{0.1cm} ({f}/{f_0}).$$
 +
*The value&nbsp; $\arctan(1) = π/4 \rm \underline{\: = 0.786 \: rad}$&nbsp; is obtained for&nbsp; $f = f_0$&nbsp; and &nbsp; $\arctan(2) \rm \underline{\: = 1.108 \: rad}$&nbsp; for&nbsp; $f = 2f_0$&nbsp;.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; For the amplitude response of a low-pass filter of&nbsp; $n$–th order the following is valid:
 +
:$$|H_n(f)| = |H_{\rm 1}(f)|^n.$$
 +
Regarding the&nbsp; (logarithmic)&nbsp; damping function the&nbsp; $n$–fold multiplication becomes the &nbsp; $n$–fold sum:
 +
:$$a_n(f) = n \cdot a_1(f)=  {n}/{2} \cdot \ln \left[ 1 + ({f}/{f_0})^2 \right].$$
 +
For the low-pass filter of second order this results in the special case:
 +
:$$a_2(f) =  \ln \left[ 1 + ({f}/{f_0})^2 \right]= 2 \cdot a_1(f).$$
 +
The dB values are now:
 +
*$ \underline{6.02 \: {\rm dB} ≈ 6 \: {\rm dB}}$&nbsp; für&nbsp; $f = ±f_0$,
 +
*$\rm \underline{13.98 \: {\rm dB} ≈ 14 \: {\rm dB}}$&nbsp; für&nbsp; $f = ±2f_0$.  
  
  
'''(2)'''&nbsp; Der Frequenzgang $H_1(f)$ kann auch nach Real– und Imaginärteil getrennt dargestellt werden:
+
It is thus obvious that for&nbsp; $n > 1$&nbsp; the parameter&nbsp; $f_0$&nbsp; no longer indicates the 3dB cut off frequency $f_{\rm G}$.  
$$H_{\rm 1}(f) = \frac{1}{ {1+ (f/f_0)^2} } - {\rm j} \cdot \frac{f/f_0}{ {1+ (f/f_0)^2} }.$$
 
Damit ergibt sich für den Phasengang:
 
$$b_1(f) = - \arctan \frac{ {\rm Im} }{ {\rm Re} } = \arctan \frac{f}{f_0}.$$
 
Für $f = f_0$ erhält man $\arctan(1) = π/4 \rm \underline{\: = 0.786 \: rad}$, für $f = 2f_0$ den Wert $\arctan(2) \rm \underline{\: = 1.108 \: rad}$.  
 
  
 +
For&nbsp; $n = 2$ &nbsp; &rArr; &nbsp; "low-pass filter of second order" the following relationship applies instead: &nbsp;
 +
:$${f_{\rm G} } =  {f_0}/\sqrt{2}.$$
  
'''(3)'''&nbsp; Für den Amplitudengang eines Tiefpasses $n$–ter Ordnung gilt:
 
$$|H_n(f)| = |H_{\rm 1}(f)|^n.$$
 
Bezüglich der (logarithmischen) Dämpfungsfunktion wird aus der $n$–fachen Multiplikation die $n$–fache Summe:
 
$$a_n(f) = n \cdot a_1(f)=  {n}/{2} \cdot \ln \left[ 1 + ({f}/{f_0})^2 \right]$$
 
und speziell für den Tiefpass zweiter Ordnung:
 
$$a_2(f) =  \ln \left[ 1 + ({f}/{f_0})^2 \right]= 2 \cdot a_1(f).$$
 
Die dB–Werte lauten nun $ \underline{6.02 \: {\rm dB} ≈ 6 \: {\rm dB}}$ für $f = ±f_0$ und $\rm \underline{13.98 \: {\rm dB}}$ für $f = ±2f_0$.
 
  
Damit ist offensichtlich, dass für $n$ > 1 der Parameter $f_0$ nicht mehr die 3 dB–Grenzfrequenz angibt. Für $n = 2$ gilt ${f_{\rm 0} } = \sqrt{2} \cdot {f_0}$.  
+
'''(4)'''&nbsp; Also, with respect to the phase function the following holds:
 +
:$$b_n(f) =  n \cdot b_1(f), \hspace{0.3 cm} b_2(f) =  2 \cdot b_1(f).$$
 +
Thus, for the low-pass filter of second order all phase values between&nbsp; $±π$&nbsp; are possible.&nbsp; In particular the following holds:
 +
*$b_2(f = f_0) = π/2 \rm \underline{\: = 1.571 \: rad}$,
 +
* $b_2(f = 2f_0) = \rm 2.216 \: rad$.  
  
  
'''(4)'''&nbsp; Auch bezüglich der Phasenfunktion gilt:
+
Since&nbsp; "phase"&nbsp; is an odd function the following applies to it: &nbsp;  $b_2(f = \: –2f_0) = \rm \underline{–2.216 \: rad}$.  
$$b_n(f) =  n \cdot b_1(f), \hspace{0.3 cm} b_2(f) =  2 \cdot b_1(f).$$
 
Bei einem Tiefpass zweiter Ordnung sind somit alle Phasenwerte zwischen $±π$ möglich. Insbesondere ist $b_2(f = f_0) = π/2 \rm \underline{\: = 1.571 \: rad}$ und $b_2(f = 2f_0) = \rm 2.216 \: rad$. Da die Phase eine ungerade Funktion ist, gilt hier: $b_2(f = \: –2f_0) = \rm \underline{–2.216 \: rad}$.  
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Lineare zeitinvariante Systeme|^1.1 Systembeschreibung im Frequenzbereich^]]
+
[[Category:Linear and Time-Invariant Systems: Exercises|^1.1 System Description in Frequency Domain^]]

Latest revision as of 13:47, 22 September 2021

Damping– & phase function

The simplest form of a low-pass filter – for example, realisable as an RC low-pass filter according to  Exercise 1.1  – has the following frequency response:

$$H_{\rm 1}(f) = \frac{1}{1+{\rm j}\cdot f/f_0}.$$

This is then referred to as a low-pass filter of first order. The diagram shows the following for this filter

  • above the  "damping curve"  $a_1(f)$,
  • below the  "phase response"  $b_1(f)$.


Correspondingly, for a low-pass filter of  $n$–th order the following defining equation applies:

$$H_n(f) = H_{\rm 1}(f)^n.$$


In this task,

  • based on the functions  $a_1(f)$  and  $b_1(f)$  of the low-pass filter of first order
  • the damping curve and phase response of a low-pass filter of higher order is to be analyzed.


In general, the following holds:

$$H(f) = {\rm e}^{-a(f) - {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}b(f)}.$$




Hint:

  • There is the following relationship between the Np- and dB-values of an amplitude value  $|H| = 1/x$ :
$$a_{\rm Np} = \ln (x) = \ln (10) \cdot \lg (x) = \frac{\ln (10)}{20} \cdot a_{\rm dB} \approx 0.11513 \cdot a_{\rm dB}.$$
  • Further consider that for two complex quantities  $z_1$  and  $z_2$  the following equations hold:
$$|z_1 \cdot z_2| = |z_1| \cdot |z_2|, \hspace{0.5 cm}{\rm arc}\hspace{0.05 cm}(z_1 \cdot z_2) = {\rm arc}\hspace{0.05 cm}(z_1) + {\rm arc}\hspace{0.05 cm}(z_2).$$


Questions

1

Compute the damping curve  $a_1(f)$  of a low-pass filter of first order in  $\rm dB$.
What  $\rm dB$  values are obtained for  $f = f_0$  and  $f = 2f_0$?

$a_1(f = f_0)\ = \ $

 $\text{dB}$
$a_1(f = 2f_0)\ = \ $

 $\text{dB}$

2

Compute the phase response  $b_1(f)$.
What values in radian (rad) are obtained for  $f = f_0$  and  $f = 2f_0$?

$b_1(f = f_0)\ = \ $

 $\text{rad}$
$b_1(f = 2f_0)\ = \ $

 $\text{rad}$

3

What is the damping curve  $a_n(f)$  of a low-pass filter of  $n$–th order?
What  $\rm dB$  values are obtained for  $n = 2$  for  $f = f_0$  or  $f = \: –2f_0$?

$a_2(f = f_0)\ = \ $

 $\text{dB}$
$a_2(f = -2f_0)\ = \ $

 $\text{dB}$

4

Compute the phase function  $b_2(f)$  of a low-pass filter of second order.
What values (in radian) are obtained for  $f = f_0$  and  $f = \: –2f_0$?

$b_2(f = f_0)\ = \ $

 $\text{rad}$
$b_2(f = -2f_0)\ = \ $

 $\text{rad}$


Solution

(1)  The amplitude response of the low-pass filter of first order is:

$$|H_{\rm 1}(f)| = \frac{1}{\sqrt{1+ (f/f_0)^2}}.$$
  • This gives the damping curve in Neper (Np):
$$a_1(f) = \ln \frac{1}{|H_1(f)|} = {1}/{2} \cdot \ln \left[1 + ({f}/{f_0})^2 \right] \Rightarrow a_1(f = f_0) = 0.3466 \hspace{0.1 cm}{\rm Np},\hspace{0.5 cm}a_1(f = 2 f_0) = 0.8047 \hspace{0.1 cm}{\rm Np}.$$

The corresponding dB values are obtained by multiplying by  $1/0.11513 = 8.68589$  and result in

  • $ \underline{3.01 \: {\rm dB} ≈ 3 \: {\rm dB}}$  für  $ f = f_0$,
  • $ \underline{6.99 \: {\rm dB}}$  für  $ f = 2f_0$.


Thus, for the low-pass filter of first order the 3dB cut-off frequency is   $f_{\rm G} = f_0$.


(2)  The frequency response  $H_1(f)$  can also be represented separately by thr real and the imaginary part:

$$H_{\rm 1}(f) = \frac{1}{ {1+ (f/f_0)^2} } - {\rm j} \cdot \frac{f/f_0}{ {1+ (f/f_0)^2} }.$$
  • Hence, the following holds for the phase response:
$$b_1(f) = - \arctan \hspace{0.1cm} ( {\rm Im} /{\rm Re} ) = \arctan \hspace{0.1cm} ({f}/{f_0}).$$
  • The value  $\arctan(1) = π/4 \rm \underline{\: = 0.786 \: rad}$  is obtained for  $f = f_0$  and   $\arctan(2) \rm \underline{\: = 1.108 \: rad}$  for  $f = 2f_0$ .


(3)  For the amplitude response of a low-pass filter of  $n$–th order the following is valid:

$$|H_n(f)| = |H_{\rm 1}(f)|^n.$$

Regarding the  (logarithmic)  damping function the  $n$–fold multiplication becomes the   $n$–fold sum:

$$a_n(f) = n \cdot a_1(f)= {n}/{2} \cdot \ln \left[ 1 + ({f}/{f_0})^2 \right].$$

For the low-pass filter of second order this results in the special case:

$$a_2(f) = \ln \left[ 1 + ({f}/{f_0})^2 \right]= 2 \cdot a_1(f).$$

The dB values are now:

  • $ \underline{6.02 \: {\rm dB} ≈ 6 \: {\rm dB}}$  für  $f = ±f_0$,
  • $\rm \underline{13.98 \: {\rm dB} ≈ 14 \: {\rm dB}}$  für  $f = ±2f_0$.


It is thus obvious that for  $n > 1$  the parameter  $f_0$  no longer indicates the 3dB cut off frequency $f_{\rm G}$.

For  $n = 2$   ⇒   "low-pass filter of second order" the following relationship applies instead:  

$${f_{\rm G} } = {f_0}/\sqrt{2}.$$


(4)  Also, with respect to the phase function the following holds:

$$b_n(f) = n \cdot b_1(f), \hspace{0.3 cm} b_2(f) = 2 \cdot b_1(f).$$

Thus, for the low-pass filter of second order all phase values between  $±π$  are possible.  In particular the following holds:

  • $b_2(f = f_0) = π/2 \rm \underline{\: = 1.571 \: rad}$,
  • $b_2(f = 2f_0) = \rm 2.216 \: rad$.


Since  "phase"  is an odd function the following applies to it:   $b_2(f = \: –2f_0) = \rm \underline{–2.216 \: rad}$.