Difference between revisions of "Aufgaben:Exercise 1.1Z: Non-redundant Binary Source"

From LNTwww
 
(One intermediate revision by the same user not shown)
Line 2: Line 2:
 
{{quiz-Header|Buchseite=Digital_Signal_Transmission/System_Components_of_a_Baseband_Transmission_System
 
{{quiz-Header|Buchseite=Digital_Signal_Transmission/System_Components_of_a_Baseband_Transmission_System
 
}}
 
}}
 
 
 
[[File:P_ID1257__Dig_Z_1_1.png|right|frame|Dirac-shaped source signal]]
 
[[File:P_ID1257__Dig_Z_1_1.png|right|frame|Dirac-shaped source signal]]
 
Any digital source can be completely described by its source symbol sequence
 
Any digital source can be completely described by its source symbol sequence
:$$\langle q_\nu \rangle = \langle \hspace{0.05cm}q_0 \hspace{0.05cm}, q_1 \hspace{0.05cm}, q_2 \hspace{0.05cm}, ... \hspace{0.05cm} \rangle$$
+
:$$\langle q_\nu \rangle = \langle \hspace{0.05cm}q_0 \hspace{0.05cm}, q_1 \hspace{0.05cm}, q_2 \hspace{0.05cm}, ... \hspace{0.05cm} \rangle.$$
Contrary to the theory part, here the control variable  $\nu$  starts with zero. If each individual symbol  $q_\nu$  originates from the symbol set  $\{\rm L, \ H\}$, it is called a binary source.
+
Contrary to the theory part,  here the control variable  $\nu$  starts with zero.  If each individual symbol  $q_\nu$  originates from the symbol set  $\{\rm L, \ H\}$,  it is called a binary source.
  
 
Using the symbol spacing  $T$,  one can also characterize the source symbol sequence  $\langle q_\nu \rangle$  in an equivalent way by the Dirac-shaped source signal
 
Using the symbol spacing  $T$,  one can also characterize the source symbol sequence  $\langle q_\nu \rangle$  in an equivalent way by the Dirac-shaped source signal
:$$q(t) = \sum_{(\nu)} a_\nu \cdot {\rm \delta} ( t - \nu \cdot T)$$
+
:$$q(t) = \sum_{(\nu)} a_\nu \cdot {\rm \delta} ( t - \nu \cdot T),$$
which rather corresponds to a system-theoretic approach. Here, we denote  $a_\nu$  as the amplitude coefficients.
+
which rather corresponds to a system-theoretic approach.  Here, we denote  $a_\nu$  as the amplitude coefficients.
*In the case of a binary unipolar digital signal transmission, holds:
+
*In the case of a binary unipolar digital signal transmission holds:
 
:$$a_\nu = \left\{ \begin{array}{c} 1 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}c} q_\nu = \mathbf{H} \hspace{0.05cm}, \\ q_\nu = \mathbf{L} \hspace{0.05cm}. \\ \end{array}$$
 
:$$a_\nu = \left\{ \begin{array}{c} 1 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}c} q_\nu = \mathbf{H} \hspace{0.05cm}, \\ q_\nu = \mathbf{L} \hspace{0.05cm}. \\ \end{array}$$
*Correspondingly, in the case of a bipolar system:
+
*Correspondingly,  in the case of a bipolar system:
 
:$$a_\nu = \left\{ \begin{array}{c} +1 \\ -1 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}c} q_\nu = \mathbf{H} \hspace{0.05cm}, \\ q_\nu = \mathbf{L} \hspace{0.05cm}. \\ \end{array}$$
 
:$$a_\nu = \left\{ \begin{array}{c} +1 \\ -1 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}c} q_\nu = \mathbf{H} \hspace{0.05cm}, \\ q_\nu = \mathbf{L} \hspace{0.05cm}. \\ \end{array}$$
  
The diagram shows the Dirac-shaped source signal  $q(t)$  of a binary source. It is known from this source that it is redundancy-free. This statement is quite relevant for solving the problems.
+
The diagram shows the Dirac-shaped source signal  $q(t)$  of a binary source.  It is known from this source that it is redundancy-free.  This statement is quite relevant for solving the problems.
  
  
Line 24: Line 22:
  
  
''Notes:''
+
Notes:  
*The exercise belongs to the chapter  [[Digital_Signal_Transmission/System_Components_of_a_Baseband_Transmission_System|System Components of a Baseband Transmission System]].
+
*The exercise belongs to the chapter  [[Digital_Signal_Transmission/System_Components_of_a_Baseband_Transmission_System|"System Components of a Baseband Transmission System"]].
*Reference is made in particular to the section  [[Digital_Signal_Transmission/System_Components_of_a_Baseband_Transmission_System#Descriptive_variables_of_the_digital_source|Descriptive variables of the digital source]].
+
*Reference is made in particular to the section  [[Digital_Signal_Transmission/System_Components_of_a_Baseband_Transmission_System#Descriptive_variables_of_the_digital_source|"Descriptive variables of the digital source"]].  
+
*In the literature,  the two possible binary symbols are usually designated as  $\rm L$  and  $\rm 0$. 
*In the literature, the two possible binary symbols are usually designated as  $\rm L$  and  $\rm 0$. 
 
 
*To avoid the somewhat confusing mapping  $a_\nu = 1$  for  $q_\nu =\rm 0$  and  $a_\nu = 0$  for  $q_\nu =\rm L$,  we use the symbols  $\rm L$  ("Low") and  $\rm H$  ("High") in our learning tutorial.
 
*To avoid the somewhat confusing mapping  $a_\nu = 1$  for  $q_\nu =\rm 0$  and  $a_\nu = 0$  for  $q_\nu =\rm L$,  we use the symbols  $\rm L$  ("Low") and  $\rm H$  ("High") in our learning tutorial.
  
Line 61: Line 58:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  According to the diagram, the distance between two symbols is $\underline{T = 2\ \rm µ s}$.
+
'''(1)'''  According to the diagram,  the distance between two symbols is  $\underline{T = 2\ \rm µ s}$.
  
  
Line 67: Line 64:
  
  
'''(3)'''&nbsp; The possible amplitude coefficients are $\pm 1$. Therefore, the given symbol sequence is <u>bipolar</u>.
+
'''(3)'''&nbsp; The possible amplitude coefficients are $\pm 1$.&nbsp; Therefore,&nbsp; the given symbol sequence is&nbsp; <u>bipolar</u>.
  
  
'''(4)'''&nbsp; The amplitude coefficient $a_2$ can be read at $2T = 4 \ \rm &micro; s$.  
+
'''(4)'''&nbsp; The amplitude coefficient&nbsp; $a_2$&nbsp; can be read at&nbsp; $2T = 4 \ \rm &micro; s$.&nbsp; With bipolar mapping,&nbsp; it follows that&nbsp; $a_2 = -1$&nbsp; for symbol&nbsp; $q_2 \hspace{0.15cm}\underline {=\rm L}$.
*With bipolar mapping, it follows that $a_2 = -1$ for symbol $q_2 \hspace{0.15cm}\underline {=\rm L}$.
 
  
  
'''(5)'''&nbsp; Even if the diagram suggests otherwise for the short time interval shown here:
+
'''(5)'''&nbsp; Even if the diagram suggests otherwise for the short time interval shown here:&nbsp; For a redundancy-free binary source,&nbsp; in addition to the statistical independence of the symbols,&nbsp; $p_{\rm H} = p_{\rm L}\hspace{0.15cm}\underline{ = 0.5}$&nbsp; (equally probable symbols)&nbsp; must also hold.
*For a redundancy-free binary source, in addition to the statistical independence of the symbols, $p_{\rm H} = p_{\rm L}\hspace{0.15cm}\underline{ = 0.5}$ (equally probable symbols) must also hold.
 
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Latest revision as of 13:45, 29 April 2022

Dirac-shaped source signal

Any digital source can be completely described by its source symbol sequence

$$\langle q_\nu \rangle = \langle \hspace{0.05cm}q_0 \hspace{0.05cm}, q_1 \hspace{0.05cm}, q_2 \hspace{0.05cm}, ... \hspace{0.05cm} \rangle.$$

Contrary to the theory part,  here the control variable  $\nu$  starts with zero.  If each individual symbol  $q_\nu$  originates from the symbol set  $\{\rm L, \ H\}$,  it is called a binary source.

Using the symbol spacing  $T$,  one can also characterize the source symbol sequence  $\langle q_\nu \rangle$  in an equivalent way by the Dirac-shaped source signal

$$q(t) = \sum_{(\nu)} a_\nu \cdot {\rm \delta} ( t - \nu \cdot T),$$

which rather corresponds to a system-theoretic approach.  Here, we denote  $a_\nu$  as the amplitude coefficients.

  • In the case of a binary unipolar digital signal transmission holds:
$$a_\nu = \left\{ \begin{array}{c} 1 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}c} q_\nu = \mathbf{H} \hspace{0.05cm}, \\ q_\nu = \mathbf{L} \hspace{0.05cm}. \\ \end{array}$$
  • Correspondingly,  in the case of a bipolar system:
$$a_\nu = \left\{ \begin{array}{c} +1 \\ -1 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}c} q_\nu = \mathbf{H} \hspace{0.05cm}, \\ q_\nu = \mathbf{L} \hspace{0.05cm}. \\ \end{array}$$

The diagram shows the Dirac-shaped source signal  $q(t)$  of a binary source.  It is known from this source that it is redundancy-free.  This statement is quite relevant for solving the problems.




Notes:

  • The exercise belongs to the chapter  "System Components of a Baseband Transmission System".
  • Reference is made in particular to the section  "Descriptive variables of the digital source".
  • In the literature,  the two possible binary symbols are usually designated as  $\rm L$  and  $\rm 0$. 
  • To avoid the somewhat confusing mapping  $a_\nu = 1$  for  $q_\nu =\rm 0$  and  $a_\nu = 0$  for  $q_\nu =\rm L$,  we use the symbols  $\rm L$  ("Low") and  $\rm H$  ("High") in our learning tutorial.


Questions

1

What is the symbol distance  $T$?

$T \ = \ $

$\ \rm µ s$

2

What is the bit rate  $R$ output by the source?

$R \ = \ $

$\ \rm kbit/s$

3

Is this representation unipolar or bipolar?

The symbol sequence is unipolar.
The symbol sequence is bipolar.

4

What is the source symbol  $q_2$?

$q_2 = \rm L$,
$q_2 = \rm H$.

5

What is the symbol probability  $p_{\rm H} = {\rm Pr}(q_\nu = \rm H$)?

$p_{\rm H} \ = \ $


Solution

(1)  According to the diagram,  the distance between two symbols is  $\underline{T = 2\ \rm µ s}$.


(2)  With this redundancy-free binary source – and only with such a source – the bit rate is $R = 1/T\hspace{0.15cm}\underline{=500 \ \rm kbit/s}$.


(3)  The possible amplitude coefficients are $\pm 1$.  Therefore,  the given symbol sequence is  bipolar.


(4)  The amplitude coefficient  $a_2$  can be read at  $2T = 4 \ \rm µ s$.  With bipolar mapping,  it follows that  $a_2 = -1$  for symbol  $q_2 \hspace{0.15cm}\underline {=\rm L}$.


(5)  Even if the diagram suggests otherwise for the short time interval shown here:  For a redundancy-free binary source,  in addition to the statistical independence of the symbols,  $p_{\rm H} = p_{\rm L}\hspace{0.15cm}\underline{ = 0.5}$  (equally probable symbols)  must also hold.