Difference between revisions of "Aufgaben:Exercise 1.2: A Simple Binary Channel Code"

From LNTwww
 
(4 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
}}
 
}}
  
[[File:EN_KC_A_1_2.png|right|frame|Clarification of channel (de)coding]]
+
[[File:EN_KC_A_1_2_bitte.png|right|frame|Clarification:  Channel coding and decoding ]]
The graph illustrates the channel coding considered here  $\mathcal{C}$:
+
The graph illustrates the channel coding  $\mathcal{C}$  considered here:
*There are four possible information blocks  $\underline{u} = (u_{1}, u_{2}, \text{...}\hspace{0.05cm} , u_{k})$.
+
*There are four possible information blocks  $\underline{u} = (u_{1},\ u_{2},\ \text{...}\hspace{0.05cm} ,\ u_{k})$.
*Each information block  $\underline{u}$  is uniquely assigned (recognizable by the same color) to the codeword  $\underline{x}= (x_{1}, x_{2}, \text{...}\hspace{0.05cm} , x_{n})$ .
 
*Due to decoding errors  $(0 → 1, \ 1 → 0)$  there are more than 4, namely 16 different receive words  $\underline{y} = (y_{1}, y_{2}, \text{...} \hspace{0.05cm} , y_{n})$.
 
  
 +
*Each information block  $\underline{u}$  is uniquely assigned  (recognizable by the same color)  to the code word  $\underline{x}= (x_{1},\ x_{2},\ \text{...}\hspace{0.05cm} ,\ x_{n})$ .
  
From subtask '''(4)''' we consider the following mapping:
+
*Due to decoding errors  $(0 → 1, \ 1 → 0)$  there are more than 4,  namely 16 different receive words  $\underline{y} = (y_{1},\ y_{2},\ \text{...} \hspace{0.05cm} ,\ y_{n})$.
:$$\underline{u_0} = (0, 0) \leftrightarrow (0, 0, 0, 0) = \underline{x_0}\hspace{0.05cm},$$
 
:$$\underline{u_1} = (0, 1) \leftrightarrow (0, 1, 0, 1) = \underline{x_1}\hspace{0.05cm},$$
 
:$$\underline{u_2} = (1, 0) \leftrightarrow (1, 0, 1, 0) = \underline{x_2}\hspace{0.05cm},$$
 
:$$\underline{u_3} = (1, 1) \leftrightarrow (1, 1, 1, 1) = \underline{x_3}\hspace{0.05cm}.$$
 
  
  
 +
From subtask  '''(4)'''  we consider the following mapping:
 +
:$$\underline{u_0} = (0,\ 0) \leftrightarrow (0,\ 0,\ 0,\ 0) = \underline{x_0}\hspace{0.05cm},$$
 +
:$$\underline{u_1} = (0,\ 1) \leftrightarrow (0,\ 1,\ 0,\ 1) = \underline{x_1}\hspace{0.05cm},$$
 +
:$$\underline{u_2} = (1,\ 0) \leftrightarrow (1,\ 0,\ 1,\ 0) = \underline{x_2}\hspace{0.05cm},$$
 +
:$$\underline{u_3} = (1,\ 1) \leftrightarrow (1,\ 1,\ 1,\ 1) = \underline{x_3}\hspace{0.05cm}.$$
  
  
  
 +
Hints:
 +
*This exercise belongs to the chapter  [[Channel_Coding/Objective_of_Channel_Coding|"Objective of Channel Coding"]]
  
Hints:
 
*This exercise belongs to the chapter  [[Channel_Coding/Objective_of_Channel_Coding|Obective of Channel Coding]]
 
 
*Reference is made in particular to the pages 
 
*Reference is made in particular to the pages 
::[[Channel_Coding/Objective_of_Channel_Coding#Block_diagram_and_requirements|Block diagram and requirements]],
+
:*[[Channel_Coding/Objective_of_Channel_Coding#Block_diagram_and_requirements|"Block diagram and requirements"]],
::[[Channel_Coding/Objective_of_Channel_Coding#Important_definitions_for_block_coding|Important definitions for block coding]].
+
:*[[Channel_Coding/Objective_of_Channel_Coding#Important_definitions_for_block_coding|"Important definitions for block coding"]].
 
      
 
      
  
Line 37: Line 37:
  
  
{What is the codeword length $n$?
+
{What is the code word length  $n$?
 
|type="{}"}
 
|type="{}"}
 
$n \ = \ $ { 4 }  
 
$n \ = \ $ { 4 }  
Line 59: Line 59:
 
{Indicate the Hamming distances between the following code words.
 
{Indicate the Hamming distances between the following code words.
 
|type="{}"}
 
|type="{}"}
$ d_{\rm H} \ (\underline{x}_0, \underline{x}_1) \ = \ $ { 2 }
+
$ d_{\rm H} \ (\underline{x}_0,\ \underline{x}_1) \ = \ $ { 2 }
$ d_{\rm H} \ (\underline{x}_0, \underline{x}_3) \ = \ $ { 4 }
+
$ d_{\rm H} \ (\underline{x}_0,\ \underline{x}_3) \ = \ $ { 4 }
$ d_{\rm H} \ (\underline{x}_1, \underline{x}_2) \ = \ $ { 4 }
+
$ d_{\rm H} \ (\underline{x}_1,\ \underline{x}_2) \ = \ $ { 4 }
  
{What is the minimum Hamming distance of the code under consideration  $\mathcal{C}$?
+
{What is the minimum Hamming distance of the code  $\mathcal{C}$  under consideration?
 
|type="{}"}
 
|type="{}"}
 
$ d_{\rm min} (\mathcal{C}) \ = \ $ { 2 }
 
$ d_{\rm min} (\mathcal{C}) \ = \ $ { 2 }
Line 72: Line 72:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  The code size here is given to $|\mathcal{C}| = 4$.  
+
'''(1)'''  The code size here is given to  $|\mathcal{C}| = 4$.  
*In general, $|\mathcal{C}|= 2^k$.  
+
*In general,  $|\mathcal{C}|= 2^k$.  
*From this follows $\underline{ k = 2}$.
+
*From this follows  $\underline{ k = 2}$.
 
 
  
  
'''(2)'''  Each codeword $\underline{x}$ is uniquely associated with an information block $\underline{u}$.
 
*By corruptions of single of the total $n$ bits of a codeword $\underline{x}$ the receive words $\underline{y}$ result.
 
*From the number $(16 = 2^4$) of possible receive words follows $\underline{ n = 4}$.
 
  
 +
'''(2)'''  Each code word  $\underline{x}$  is uniquely associated with an information block  $\underline{u}$.
 +
*By corruptions of a single of the total  $n$  bits of a code word  $\underline{x}$  the receive words  $\underline{y}$  result.
 +
*From the number  $(16 = 2^4$)  of possible receive words follows  $\underline{ n = 4}$.
  
  
'''(3)'''  The code rate is by definition $R = k/n$.
 
*Using the above results, we obtain $\underline{R = 0.5}$.
 
  
 +
'''(3)'''  The code rate is by definition  $R = k/n$.  Using the above results,  we obtain $\underline{R = 0.5}$.
  
  
'''(4)'''&nbsp; Correct <u>Yes</u>:  
+
'''(4)'''&nbsp; Correct is&nbsp; <u>Yes</u>:&nbsp; A systematic code is characterized by the fact that in each case the first&nbsp; $k$&nbsp; bits of the code words are identical to the information block.
*A systematic code is characterized by the fact that in each case the first $k$ bits of the code words are identical to the information block.
 
  
  
  
'''(5)'''&nbsp; The Hamming weight of a binary code is equal to the algebraic sum $x_1 + x_2 + \text{...} + x_n$ over all code word elements. Thus:
+
'''(5)'''&nbsp; The Hamming weight of a binary code is equal to the algebraic sum&nbsp; $x_1 + x_2 + \text{...} + x_n$&nbsp; over all code word elements.&nbsp; Thus:
 
:$$w_{\rm H}(\underline{x}_0) \hspace{0.15cm} \underline {= 0} \hspace{0.05cm}, \hspace{0.3cm}w_{\rm H}(\underline{x}_1) \hspace{0.15cm} \underline {= 2} \hspace{0.05cm}, \hspace{0.3cm} w_{\rm H}(\underline{x}_2) \hspace{0.15cm} \underline {= 2}\hspace{0.05cm}, \hspace{0.3cm}w_{\rm H}(\underline{x}_3) \hspace{0.15cm} \underline {= 4}\hspace{0.05cm}.$$
 
:$$w_{\rm H}(\underline{x}_0) \hspace{0.15cm} \underline {= 0} \hspace{0.05cm}, \hspace{0.3cm}w_{\rm H}(\underline{x}_1) \hspace{0.15cm} \underline {= 2} \hspace{0.05cm}, \hspace{0.3cm} w_{\rm H}(\underline{x}_2) \hspace{0.15cm} \underline {= 2}\hspace{0.05cm}, \hspace{0.3cm}w_{\rm H}(\underline{x}_3) \hspace{0.15cm} \underline {= 4}\hspace{0.05cm}.$$
  
  
'''(6)'''&nbsp; The Hamming distance between two codewords here can only take the values $2$ and $4$:
+
'''(6)'''&nbsp; The Hamming distance between two code words here can only take the values&nbsp; $2$&nbsp; and&nbsp; $4$:
 
:$$d_{\rm H}(\underline{x}_0, \hspace{0.05cm}\underline{x}_1) \hspace{0.15cm} \underline {= 2}\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{x}_0, \hspace{0.05cm}\underline{x}_2) = 2\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{x}_0, \hspace{0.05cm}\underline{x}_3) \hspace{0.15cm} \underline {= 4}\hspace{0.05cm},$$
 
:$$d_{\rm H}(\underline{x}_0, \hspace{0.05cm}\underline{x}_1) \hspace{0.15cm} \underline {= 2}\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{x}_0, \hspace{0.05cm}\underline{x}_2) = 2\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{x}_0, \hspace{0.05cm}\underline{x}_3) \hspace{0.15cm} \underline {= 4}\hspace{0.05cm},$$
  
Line 104: Line 101:
  
  
'''(7)'''&nbsp; From the result of subtask (6) it follows $d_{\rm min}(\mathcal{C}) \hspace{0.15cm}\underline{= 2}$.  
+
'''(7)'''&nbsp; From the result of subtask&nbsp; '''(6)'''&nbsp; it follows&nbsp; $d_{\rm min}(\mathcal{C}) \hspace{0.15cm}\underline{= 2}$.  
*Generally, for this quantity:
+
*Generally,&nbsp; for this quantity:
 
:$$d_{\rm min}(\mathcal{C}) = \min_{\substack{\underline{x},\hspace{0.05cm}\underline{x}' \hspace{0.05cm}\in \hspace{0.05cm} \mathcal{C} \ {\underline{x}} \hspace{0.05cm}\ne \hspace{0.05cm} \underline{x}'}}\hspace{0.1cm}d_{\rm H}(\underline{x}, \hspace{0.05cm}\underline{x}')\hspace{0.05cm}.$$
 
:$$d_{\rm min}(\mathcal{C}) = \min_{\substack{\underline{x},\hspace{0.05cm}\underline{x}' \hspace{0.05cm}\in \hspace{0.05cm} \mathcal{C} \ {\underline{x}} \hspace{0.05cm}\ne \hspace{0.05cm} \underline{x}'}}\hspace{0.1cm}d_{\rm H}(\underline{x}, \hspace{0.05cm}\underline{x}')\hspace{0.05cm}.$$
  

Latest revision as of 16:09, 17 August 2022

Clarification:  Channel coding and decoding

The graph illustrates the channel coding  $\mathcal{C}$  considered here:

  • There are four possible information blocks  $\underline{u} = (u_{1},\ u_{2},\ \text{...}\hspace{0.05cm} ,\ u_{k})$.
  • Each information block  $\underline{u}$  is uniquely assigned  (recognizable by the same color)  to the code word  $\underline{x}= (x_{1},\ x_{2},\ \text{...}\hspace{0.05cm} ,\ x_{n})$ .
  • Due to decoding errors  $(0 → 1, \ 1 → 0)$  there are more than 4,  namely 16 different receive words  $\underline{y} = (y_{1},\ y_{2},\ \text{...} \hspace{0.05cm} ,\ y_{n})$.


From subtask  (4)  we consider the following mapping:

$$\underline{u_0} = (0,\ 0) \leftrightarrow (0,\ 0,\ 0,\ 0) = \underline{x_0}\hspace{0.05cm},$$
$$\underline{u_1} = (0,\ 1) \leftrightarrow (0,\ 1,\ 0,\ 1) = \underline{x_1}\hspace{0.05cm},$$
$$\underline{u_2} = (1,\ 0) \leftrightarrow (1,\ 0,\ 1,\ 0) = \underline{x_2}\hspace{0.05cm},$$
$$\underline{u_3} = (1,\ 1) \leftrightarrow (1,\ 1,\ 1,\ 1) = \underline{x_3}\hspace{0.05cm}.$$


Hints:

  • Reference is made in particular to the pages 



Questions

1

How many binary symbols does an information block consist of?

$k \ = \ $

2

What is the code word length  $n$?

$n \ = \ $

3

What is the code rate?

$R \ = \ $

4

Is the code given here systematic?

Yes,
No.

5

Give the Hamming weights of all code words.

$ w_{\rm H} \ (\underline{x}_0) \ = \ $

$ w_{\rm H} \ (\underline{x}_1) \ = \ $

$ w_{\rm H} \ (\underline{x}_2) \ = \ $

$ w_{\rm H} \ (\underline{x}_3) \ = \ $

6

Indicate the Hamming distances between the following code words.

$ d_{\rm H} \ (\underline{x}_0,\ \underline{x}_1) \ = \ $

$ d_{\rm H} \ (\underline{x}_0,\ \underline{x}_3) \ = \ $

$ d_{\rm H} \ (\underline{x}_1,\ \underline{x}_2) \ = \ $

7

What is the minimum Hamming distance of the code  $\mathcal{C}$  under consideration?

$ d_{\rm min} (\mathcal{C}) \ = \ $


Solution

(1)  The code size here is given to  $|\mathcal{C}| = 4$.

  • In general,  $|\mathcal{C}|= 2^k$.
  • From this follows  $\underline{ k = 2}$.


(2)  Each code word  $\underline{x}$  is uniquely associated with an information block  $\underline{u}$.

  • By corruptions of a single of the total  $n$  bits of a code word  $\underline{x}$  the receive words  $\underline{y}$  result.
  • From the number  $(16 = 2^4$)  of possible receive words follows  $\underline{ n = 4}$.


(3)  The code rate is by definition  $R = k/n$.  Using the above results,  we obtain $\underline{R = 0.5}$.


(4)  Correct is  Yes:  A systematic code is characterized by the fact that in each case the first  $k$  bits of the code words are identical to the information block.


(5)  The Hamming weight of a binary code is equal to the algebraic sum  $x_1 + x_2 + \text{...} + x_n$  over all code word elements.  Thus:

$$w_{\rm H}(\underline{x}_0) \hspace{0.15cm} \underline {= 0} \hspace{0.05cm}, \hspace{0.3cm}w_{\rm H}(\underline{x}_1) \hspace{0.15cm} \underline {= 2} \hspace{0.05cm}, \hspace{0.3cm} w_{\rm H}(\underline{x}_2) \hspace{0.15cm} \underline {= 2}\hspace{0.05cm}, \hspace{0.3cm}w_{\rm H}(\underline{x}_3) \hspace{0.15cm} \underline {= 4}\hspace{0.05cm}.$$


(6)  The Hamming distance between two code words here can only take the values  $2$  and  $4$:

$$d_{\rm H}(\underline{x}_0, \hspace{0.05cm}\underline{x}_1) \hspace{0.15cm} \underline {= 2}\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{x}_0, \hspace{0.05cm}\underline{x}_2) = 2\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{x}_0, \hspace{0.05cm}\underline{x}_3) \hspace{0.15cm} \underline {= 4}\hspace{0.05cm},$$
$$ d_{\rm H}(\underline{x}_1, \hspace{0.05cm}\underline{x}_2) \hspace{0.15cm} \underline {= 4}\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{x}_1, \hspace{0.05cm}\underline{x}_3) = 2\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{x}_2, \hspace{0.05cm}\underline{x}_3) = 2\hspace{0.05cm}.$$


(7)  From the result of subtask  (6)  it follows  $d_{\rm min}(\mathcal{C}) \hspace{0.15cm}\underline{= 2}$.

  • Generally,  for this quantity:
$$d_{\rm min}(\mathcal{C}) = \min_{\substack{\underline{x},\hspace{0.05cm}\underline{x}' \hspace{0.05cm}\in \hspace{0.05cm} \mathcal{C} \ {\underline{x}} \hspace{0.05cm}\ne \hspace{0.05cm} \underline{x}'}}\hspace{0.1cm}d_{\rm H}(\underline{x}, \hspace{0.05cm}\underline{x}')\hspace{0.05cm}.$$