Exercise 1.2: A Simple Binary Channel Code

From LNTwww
Revision as of 18:06, 4 June 2022 by Noah (talk | contribs)

Clarification of channel (de)coding

The graph illustrates the channel coding considered here  $\mathcal{C}$:

  • There are four possible information blocks  $\underline{u} = (u_{1}, u_{2}, \text{...}\hspace{0.05cm} , u_{k})$.
  • Each information block  $\underline{u}$  is uniquely assigned (recognizable by the same color) to the codeword  $\underline{x}= (x_{1}, x_{2}, \text{...}\hspace{0.05cm} , x_{n})$ .
  • Due to decoding errors  $(0 → 1, \ 1 → 0)$  there are more than 4, namely 16 different receive words  $\underline{y} = (y_{1}, y_{2}, \text{...} \hspace{0.05cm} , y_{n})$.


From subtask (4) we consider the following mapping:

$$\underline{u_0} = (0, 0) \leftrightarrow (0, 0, 0, 0) = \underline{x_0}\hspace{0.05cm},$$
$$\underline{u_1} = (0, 1) \leftrightarrow (0, 1, 0, 1) = \underline{x_1}\hspace{0.05cm},$$
$$\underline{u_2} = (1, 0) \leftrightarrow (1, 0, 1, 0) = \underline{x_2}\hspace{0.05cm},$$
$$\underline{u_3} = (1, 1) \leftrightarrow (1, 1, 1, 1) = \underline{x_3}\hspace{0.05cm}.$$




Hints:

Block diagram and requirements,
Important definitions for block coding.



Questions

1

How many binary symbols does an information block consist of?

$k \ = \ $

2

What is the codeword length $n$?

$n \ = \ $

3

What is the code rate?

$R \ = \ $

4

Is the code given here systematic?

Yes,
No.

5

Give the Hamming weights of all code words.

$ w_{\rm H} \ (\underline{x}_0) \ = \ $

$ w_{\rm H} \ (\underline{x}_1) \ = \ $

$ w_{\rm H} \ (\underline{x}_2) \ = \ $

$ w_{\rm H} \ (\underline{x}_3) \ = \ $

6

Indicate the Hamming distances between the following code words.

$ d_{\rm H} \ (\underline{x}_0, \underline{x}_1) \ = \ $

$ d_{\rm H} \ (\underline{x}_0, \underline{x}_3) \ = \ $

$ d_{\rm H} \ (\underline{x}_1, \underline{x}_2) \ = \ $

7

What is the minimum Hamming distance of the code under consideration  $\mathcal{C}$?

$ d_{\rm min} (\mathcal{C}) \ = \ $


Solution

(1)  The code size here is given to $|\mathcal{C}| = 4$.

  • In general, $|\mathcal{C}|= 2^k$.
  • From this follows $\underline{ k = 2}$.


(2)  Each codeword $\underline{x}$ is uniquely associated with an information block $\underline{u}$.

  • By corruptions of single of the total $n$ bits of a codeword $\underline{x}$ the receive words $\underline{y}$ result.
  • From the number $(16 = 2^4$) of possible receive words follows $\underline{ n = 4}$.


(3)  The code rate is by definition $R = k/n$.

  • Using the above results, we obtain $\underline{R = 0.5}$.


(4)  Correct Yes:

  • A systematic code is characterized by the fact that in each case the first $k$ bits of the code words are identical to the information block.


(5)  The Hamming weight of a binary code is equal to the algebraic sum $x_1 + x_2 + \text{...} + x_n$ over all code word elements. Thus:

$$w_{\rm H}(\underline{x}_0) \hspace{0.15cm} \underline {= 0} \hspace{0.05cm}, \hspace{0.3cm}w_{\rm H}(\underline{x}_1) \hspace{0.15cm} \underline {= 2} \hspace{0.05cm}, \hspace{0.3cm} w_{\rm H}(\underline{x}_2) \hspace{0.15cm} \underline {= 2}\hspace{0.05cm}, \hspace{0.3cm}w_{\rm H}(\underline{x}_3) \hspace{0.15cm} \underline {= 4}\hspace{0.05cm}.$$


(6)  The Hamming distance between two codewords here can only take the values $2$ and $4$:

$$d_{\rm H}(\underline{x}_0, \hspace{0.05cm}\underline{x}_1) \hspace{0.15cm} \underline {= 2}\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{x}_0, \hspace{0.05cm}\underline{x}_2) = 2\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{x}_0, \hspace{0.05cm}\underline{x}_3) \hspace{0.15cm} \underline {= 4}\hspace{0.05cm},$$
$$ d_{\rm H}(\underline{x}_1, \hspace{0.05cm}\underline{x}_2) \hspace{0.15cm} \underline {= 4}\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{x}_1, \hspace{0.05cm}\underline{x}_3) = 2\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{x}_2, \hspace{0.05cm}\underline{x}_3) = 2\hspace{0.05cm}.$$


(7)  From the result of subtask (6) it follows $d_{\rm min}(\mathcal{C}) \hspace{0.15cm}\underline{= 2}$.

  • Generally, for this quantity:
$$d_{\rm min}(\mathcal{C}) = \min_{\substack{\underline{x},\hspace{0.05cm}\underline{x}' \hspace{0.05cm}\in \hspace{0.05cm} \mathcal{C} \ {\underline{x}} \hspace{0.05cm}\ne \hspace{0.05cm} \underline{x}'}}\hspace{0.1cm}d_{\rm H}(\underline{x}, \hspace{0.05cm}\underline{x}')\hspace{0.05cm}.$$