Difference between revisions of "Aufgaben:Exercise 1.2Z: Measurement of the Frequency Response"

From LNTwww
Line 70: Line 70:
 
{{ML-Kopf}}
 
{{ML-Kopf}}
 
'''(1)'''&nbsp; <u>Approaches 2 und 3</u> are correct.:
 
'''(1)'''&nbsp; <u>Approaches 2 und 3</u> are correct.:
*Bei einem LTI–system gilt&nbsp; $Y(f) = X(f) · H(f)$.  
+
*For an LTI–system, &nbsp; $Y(f) = X(f) · H(f)$ holds.  
*Daher ist es nicht möglich, dass im Ausgangssignal ein Anteil mit&nbsp; $3 f_0$&nbsp; vorhanden ist, wenn ein solcher im Eingangssignal fehlt.  
+
*Therefore, it is not possible for a component with&nbsp; $3 f_0$&nbsp; to be present in the output signal if such a one is missing in the input signal.  
*Das heißt: &nbsp; Es liegt hier kein LZI–System vor und dementsprechend ist auch kein Frequenzgang angebbar.  
+
*This means: &nbsp; There is no LTI–system on hand and accordingly no frequency response can be specified.  
  
  
  
 
'''(2)'''&nbsp; <u>Approach 3</u> is correct.:
 
'''(2)'''&nbsp; <u>Approach 3</u> is correct.:
*Based on the given numerical values for&nbsp; $A_y(f_0)$&nbsp; filter&nbsp; $\rm B$&nbsp; can be assumedd to be a <u>band-pass filter</u>.
+
*Based on the given numerical values for&nbsp; $A_y(f_0)$&nbsp; filter&nbsp; $\rm B$&nbsp; can be assumed to be a <u>band-pass filter</u>.
  
  
  
'''(3)'''&nbsp; Mit&nbsp; $A_x = 2  \text{ V}$&nbsp;  und&nbsp; $\varphi_x = 90^\circ$&nbsp;  (Sinusfunktion) erhält man für&nbsp; $f_0 = f_3 =3 \text{ kHz}$:  
+
'''(3)'''&nbsp; With&nbsp; $A_x = 2  \text{ V}$&nbsp;  and&nbsp; $\varphi_x = 90^\circ$&nbsp;  (sine function) the following is obtained for&nbsp; $f_0 = f_3 =3 \text{ kHz}$:  
 
:$$H_{\rm B} (f_3) = \frac{A_y}{A_x} \cdot {\rm e}^{ -{\rm j}
 
:$$H_{\rm B} (f_3) = \frac{A_y}{A_x} \cdot {\rm e}^{ -{\rm j}
 
(\varphi_x - \varphi_y)} =  \frac{1\hspace{0.05cm}{\rm
 
(\varphi_x - \varphi_y)} =  \frac{1\hspace{0.05cm}{\rm
 
V}}{2\hspace{0.05cm}{\rm V}} \cdot {\rm e}^{ -{\rm j} (90^{\circ} -
 
V}}{2\hspace{0.05cm}{\rm V}} \cdot {\rm e}^{ -{\rm j} (90^{\circ} -
 
90^{\circ})} = 0.5.$$
 
90^{\circ})} = 0.5.$$
Somit ergeben sich für&nbsp; $f_0 =  f_3 = 3  \text{ kHz}$&nbsp; die Werte
+
Thus, for&nbsp; $f_0 =  f_3 = 3  \text{ kHz}$&nbsp; the values
*$a_{\rm B} (f_3)\rm \underline{\: ≈ \: 0.693 \: Np}$,
+
*$a_{\rm B} (f_3)\rm \underline{\: ≈ \: 0.693 \: Np}$ and
*$b_{\rm B}(f_3) \rm \underline{\: = \: 0 \: (Grad)}$.  
+
*$b_{\rm B}(f_3) \rm \underline{\: = \: 0 \: (Grad)}$ are obtained.  
  
  
'''(4)'''&nbsp; In analoger Weise kann der Frequenzgang bei&nbsp; $f_0 = f_2 =2  \text{ kHz}$&nbsp; ermittelt werden:  
+
'''(4)'''&nbsp; Analogously, the frequency response for&nbsp; $f_0 = f_2 =2  \text{ kHz}$&nbsp; can be determined:  
 
:$$H_{\rm B} ( f_2)  =  \frac{0.8\hspace{0.05cm}{\rm
 
:$$H_{\rm B} ( f_2)  =  \frac{0.8\hspace{0.05cm}{\rm
 
V}}{2\hspace{0.05cm}{\rm V}} \cdot {\rm e}^{ -{\rm j} (90^{\circ} -
 
V}}{2\hspace{0.05cm}{\rm V}} \cdot {\rm e}^{ -{\rm j} (90^{\circ} -
 
70^{\circ})} = 0.4\cdot {\rm e}^{ -{\rm j} 20^{\circ}}.$$
 
70^{\circ})} = 0.4\cdot {\rm e}^{ -{\rm j} 20^{\circ}}.$$
Damit erhält man  für&nbsp; $f_0 =  f_2 = 2 \ \text{ kHz}$:  
+
Hene, for&nbsp; $f_0 =  f_2 = 2 \ \text{ kHz}$:  
*$a_{\rm B}(f_2) \rm \underline{\: ≈ \: 0.916 \: Np}$,
+
*$a_{\rm B}(f_2) \rm \underline{\: ≈ \: 0.916 \: Np}$ and
* $b_{\rm B}(f_2) \rm \underline{\: = \: 20°}$.  
+
* $b_{\rm B}(f_2) \rm \underline{\: = \: 20°}$ are obtained.  
  
  
Bei&nbsp; $f_0 = -f_2 =-\hspace{-0.01cm}2  \text{ kHz}$&nbsp; gilt der gleiche Dämpfungswert. Die Phase hat jedoch das umgekehrte Vorzeichen. Also ist&nbsp; $b_{\rm B}(–f_2) = \ –\hspace{-0.01cm}20^{\circ}.$  
+
For&nbsp; $f_0 = -f_2 =-\hspace{-0.01cm}2  \text{ kHz}$&nbsp; the same damping value applies. However, the phase has the opposite sign. So, &nbsp; $b_{\rm B}(–f_2) = \ –\hspace{-0.01cm}20^{\circ}.$  
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Revision as of 02:36, 29 June 2021


Measured signal amplitudes
and phases for filter  $\rm B$

For the metrological determination of the filter frequency response, a sinusoidal input signal with an amplitude of  $2 \hspace{0.05cm} \text{V}$  and given frequency  $f_0$  is applied. The output signal  $y(t)$  or its spectrum  $Y(f)$  are then determined according to magnitude and phase.

  • The magnitude spectrum at the output of filter  $\rm A$  with frequency  $f_0 = 1 \ \text{kHz}$ is:
$$|Y_{\rm A} (f)| = 1.6\hspace{0.05cm}{\rm V} \cdot {\rm \delta } (f \pm f_0) + 0.4\hspace{0.05cm}{\rm V} \cdot {\rm \delta } (f \pm 3 f_0) .$$
  • For another filter  $\rm B$  on the other hand, is always a harmonic oscillation with the (single) frequency  $f_0$. For the frequencies  $f_0$  given in the table the amplitudes  $A_y(f_0)$  and the phases  $φ_y(f_0)$  are measured. Here, the following holds:
$$Y_{\rm B} (f) = {A_y}/{2} \cdot {\rm e}^{ {\rm j} \varphi_y} \cdot {\rm \delta } (f + f_0) + {A_y}/{2} \cdot {\rm e}^{ -{\rm j} \varphi_y} \cdot {\rm \delta } (f - f_0).$$

In the task, filter  $\rm B$  should be given in the form:$$H_{\rm B}(f) = {\rm e}^{-a_{\rm B}(f)}\cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} b_{\rm B}(f)}.$$

Here,

  • $a_{\rm B}(f)$  denotes the damping curve, and
  • $b_{\rm B}(f)$  the phase response.




Please note:


Questions

1

Which of the statements are true regarding filter  $\rm A$ ?

The following holds:   $|H(f)| = 0.8$.
Filter  $\rm A$  does not represent an LTI–system.
The specification of a frequency response is not possible.

2

Which of the statements are true regarding filter  $\rm B$ ?

Filter  $\rm B$  is a low-pass filter.
Filter  $\rm B$  is a high-pass filter.
Filter  $\rm B$  is a band-pass filter.
Filter  $\rm B$  is a band-stop filter.

3

Determine the damping value and the phase for filter  $\rm B$  and  $f_0 = 3 \ \text{kHz}$.

$a_{\rm B}(f_0 = \: \rm 3 \: kHz) \ = \ $

 $\text{Np}$
$b_{\rm B}(f_0 = \: \rm 3 \: kHz) \ =\ $

 $\text{Grad}$

4

What is the damping and phase value for for  $f_0 = 2 \ \text{kHz}$?

$a_{\rm B}(f_0 = \: \rm 2 \: kHz) \ = \ $

 $\text{Np}$
$b_{\rm B}(f_0 = \: \rm 2 \: kHz) \ =\ $

 $\text{Grad}$


Sample solution

(1)  Approaches 2 und 3 are correct.:

  • For an LTI–system,   $Y(f) = X(f) · H(f)$ holds.
  • Therefore, it is not possible for a component with  $3 f_0$  to be present in the output signal if such a one is missing in the input signal.
  • This means:   There is no LTI–system on hand and accordingly no frequency response can be specified.


(2)  Approach 3 is correct.:

  • Based on the given numerical values for  $A_y(f_0)$  filter  $\rm B$  can be assumed to be a band-pass filter.


(3)  With  $A_x = 2 \text{ V}$  and  $\varphi_x = 90^\circ$  (sine function) the following is obtained for  $f_0 = f_3 =3 \text{ kHz}$:

$$H_{\rm B} (f_3) = \frac{A_y}{A_x} \cdot {\rm e}^{ -{\rm j} (\varphi_x - \varphi_y)} = \frac{1\hspace{0.05cm}{\rm V}}{2\hspace{0.05cm}{\rm V}} \cdot {\rm e}^{ -{\rm j} (90^{\circ} - 90^{\circ})} = 0.5.$$

Thus, for  $f_0 = f_3 = 3 \text{ kHz}$  the values

  • $a_{\rm B} (f_3)\rm \underline{\: ≈ \: 0.693 \: Np}$ and
  • $b_{\rm B}(f_3) \rm \underline{\: = \: 0 \: (Grad)}$ are obtained.


(4)  Analogously, the frequency response for  $f_0 = f_2 =2 \text{ kHz}$  can be determined:

$$H_{\rm B} ( f_2) = \frac{0.8\hspace{0.05cm}{\rm V}}{2\hspace{0.05cm}{\rm V}} \cdot {\rm e}^{ -{\rm j} (90^{\circ} - 70^{\circ})} = 0.4\cdot {\rm e}^{ -{\rm j} 20^{\circ}}.$$

Hene, for  $f_0 = f_2 = 2 \ \text{ kHz}$:

  • $a_{\rm B}(f_2) \rm \underline{\: ≈ \: 0.916 \: Np}$ and
  • $b_{\rm B}(f_2) \rm \underline{\: = \: 20°}$ are obtained.


For  $f_0 = -f_2 =-\hspace{-0.01cm}2 \text{ kHz}$  the same damping value applies. However, the phase has the opposite sign. So,   $b_{\rm B}(–f_2) = \ –\hspace{-0.01cm}20^{\circ}.$