Difference between revisions of "Aufgaben:Exercise 1.3: Channel Models BSC - BEC - BSEC - AWGN"

From LNTwww
 
(24 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Kanalmodelle und Entscheiderstrukturen
+
{{quiz-Header|Buchseite=Channel Coding/Channel Models and Decision Structures
  
 
}}
 
}}
  
[[File:P_ID2383__KC_A_1_3_neu.png|right|frame|BEEC und dessen Bezug zum AWGN–Modell]]
+
[[File:EN_KC_A_1_3.png|right|frame|Channel models  "BSEC"  and  "AWGN"]]
Im Theorieteil zu diesem Kapitel werden die folgenden digitalen Kanalmodelle behandelt:
+
The theory section for this chapter covers the following digital channel models:
*[[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#Binary_Symmetric_Channel_.E2.80.93_BSC|Binary Symmetric Channel]](BSC),
+
*[[Channel_Coding/Channel_Models_and_Decision_Structures#Binary_Symmetric_Channel_.E2.80.93_BSC|Binary Symmetric Channel]]  $\rm (BSC)$,
*[[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#Binary_Erasure_Channel_.E2.80.93_BEC|Binary Erasure Channel]](BEC),
+
*[[Channel_Coding/Channel_Models_and_Decision_Structures#Binary_Erasure_Channel_.E2.80.93_BEC|Binary Erasure Channel]]  $\rm (BEC)$,
*[[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#Binary_Symmetric_Error_.26_Erasure_Channel_.E2.80.93_BSEC|Binary Symm. Error & Erasure Ch.]](BSEC).
+
*[[Channel_Coding/Channel_Models_and_Decision_Structures#Binary_Symmetric_Error_.26_Erasure_Channel_.E2.80.93_BSEC|Binary Symmetric Error & Erasure Channel]]  $\rm (BSEC)$.
Die obere Grafik zeigt das BSEC–Modell. Daraus lassen sich auch die beiden anderen Kanalmodelle ableiten:
 
*Mit λ = 0 ergibt sich das BSC–Modell.
 
*Mit $\varepsilon = 0$ ergibt sich das BEC–Modell.
 
Die untere Grafik zeigt den Zusammenhang zwischen dem BSEC–Modell und dem analogen AWGN–Kanal- modell. Um Verwechslungen zu vermeiden, bezeichnen wir das (analoge) Ausgangssignal des AWGN–Kanals mit $y_{\rm A}$, wobei mit dem Rauschterm n gilt: $y_{\rm A}$ = ''x̃'' + n.
 
  
Die Tilde weist auf die bipolare Beschreibung des Digitalsignals hin. Es gilt ''x̃'' = +1, falls x = 0, und ''x̃'' = –1, falls x = 1.
 
  
Man erkennt die ternäre Ausgangsgröße y $\in$ {0, 1, E}, die sich aus dem AWGN–Modell durch die Unterteilung in drei Bereiche ergibt. Hierzu werden die Entscheiderschwellen G0 und G1 benötigt.
+
The upper graph shows the BSEC model.  Two other channel models can be derived from it:
 +
*With  $λ = 0$  the BSC model is obtained.
 +
*With  $\varepsilon = 0$  the BEC model results.
  
y = E (''Erasure'') sagt aus, dass die Entscheidung so unsicher ist, dass als Ergebnis weder y = 0 noch y = 1 gerechtfertigt erscheint. In deutschen Fachbüchern spricht man von einer ''Auslöschung''.
 
  
''Hinweis:''
+
The lower graph shows the relationship between the discrete BSEC model and the analog AWGN model.  To avoid confusion,  we denote the  (analog)  output signal of the AWGN model by  $y_{\rm A}$,  where with the noise term  $n$  holds:
Die Aufgabe bezieht sich auf das [[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen|Kanalmodelle_und_Entscheiderstrukturen]]. Die Streuung des AWGN–Rauschens n wird für die gesamte Aufgabe zu $\sigma= 0.4 angenommen. Die Wahrscheinlichkeit, dass die Zufallsgröße n größer ist als A oder kleiner als –A, ergibt sich mit dem komplementären Gaußschen Fehlerintegral Q(x) wie folgt:
+
:$$y_{\rm A} = \tilde{x}+ n.$$
 +
 
 +
The tilde indicates the bipolar description of the digital signal.  It holds:
 +
*$\tilde{x} = +1$,   if  $x = 0$,
 +
*$\tilde{x} = -1$,   if  $x = 1$.
 +
 
 +
 
 +
One can see the ternary output variable  $y \in \{0, 1, \rm E\}$,  which is obtained from the AWGN model by dividing it into three areas.  For this,  the decision thresholds  $G_0$  and  $G_1$  are needed.
 +
 
 +
The event   $y = \rm E$  ("Erasure")  states that the decision is so uncertain that as result neither  $y = 0$   nor  $y = 1$   seems justified.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
Hints:
 +
*This exercise belongs to the chapter  [[Channel_Coding/Channel_Models_and_Decision_Structures|"Channel Models and Decision Structures"]].
 +
 +
*The standard deviation  (root mean square)  of the AWGN noise  $n$  is assumed to  $\sigma = 0.4$  for the entire exercise.
 +
 +
*The probability that the random variable  $n$  is greater than  $A$  or less than  $-A$  is given by the complementary Gaussian error integral  ${\rm Q}(x)$  as follows:
 
:$${\rm Pr}(n > A) = {\rm Pr}(n < -A) = {\rm Q}(A/\sigma)\hspace{0.05cm}.$$
 
:$${\rm Pr}(n > A) = {\rm Pr}(n < -A) = {\rm Q}(A/\sigma)\hspace{0.05cm}.$$
Es folgen noch einige Zahlenwerte der Q–Funktion:
+
*Please note further: &nbsp; Starting from the AWGN model,&nbsp; the falsification probability&nbsp; $\varepsilon = 0$&nbsp; is actually impossible.
:$$ {\rm Q}(0) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 50\%\hspace{0.05cm}, \hspace{0.2cm}{\rm Q}(0.5) \ = \ 30.85\%\hspace{0.05cm}, \hspace{0.2cm}{\rm Q}(1) \ = \ 15.87\% \hspace{0.05cm}, \hspace{0.2cm}{\rm Q}(1.5) \ = \ 6.68\%\hspace{0.05cm},$$
+
:$${\rm Q}(2) \hspace{-0.1cm} \ = \  \hspace{-0.1cm} 2.28\%\hspace{0.05cm}, \hspace{0.2cm}{\rm Q}(2.5) \ = \ 0.62\%\hspace{0.05cm}, \hspace{0.2cm}{\rm Q}(3) \ = \ 0.14\% \hspace{0.05cm}, \hspace{0.2cm}{\rm Q}(3.5) \ = \ 0.02\% \hspace{0.05cm}, \hspace{0.2cm}{\rm Q}(4) \approx 0 \hspace{0.05cm}.$$
+
*For this task,&nbsp; we make do by specifying all probabilities as percentages with two decimal places.&nbsp; Thus&nbsp; $\varepsilon \le 0.5 \cdot 10^{-4}=0.005\%$&nbsp; can be approximated by&nbsp; $\varepsilon \approx 0$.
Bitte beachten Sie weiter: Ausgehend vom AWGN–Kanal ist die Verfälschungswahrscheinlichkeit $\varepsilon = 0$ eigentlich nicht möglich. Für diese Aufgabe behelfen wir uns dadurch, dass alle Wahrscheinlichkeiten in Prozent mit zwei Nachkommastellen angegeben werden sollen. Damit kann $\varepsilon < 0.5 · 10^-4$ durch $\varepsilon \approx 0$ angenähert werden.
+
 +
 
 +
 
 +
The following are some numerical values of the Q-function:
 +
:$$ {\rm Q}(0) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 50.0\%\hspace{0.05cm}, \hspace{0.2cm}{\rm Q}(0.5) \ = \ 30.85\%\hspace{0.05cm}, \hspace{0.2cm}{\rm Q}(1) \ = \ 15.87\% \hspace{0.05cm}, \hspace{0.2cm}{\rm Q}(1.5) \ = \ 6.68\%\hspace{0.05cm},$$
 +
:$${\rm Q}(2) \hspace{-0.1cm} \ = \  \hspace{-0.1cm} 2.28\%\hspace{0.05cm}, \hspace{0.2cm}{\rm Q}(2.5) \ = \hspace{0.3cm} 0.62\%\hspace{0.05cm}, \hspace{0.2cm}{\rm Q}(3) \ = \hspace{0.3cm} 0.14\% \hspace{0.05cm}, \hspace{0.2cm}{\rm Q}(3.5) \ = \hspace{0.3cm} 0.02\% \hspace{0.05cm}, \hspace{0.2cm}{\rm Q}(4) \approx 0 \hspace{0.05cm}.$$
 +
 
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Durch welche Entscheiderschwelle(n) entsteht das BSC–Modell?
+
{Which decision threshold(s) gives rise to the BSC model?
 
|type="[]"}
 
|type="[]"}
+ Eine Entscheiderschwelle bei G = 0.
+
+ One decision threshold at&nbsp; $G = 0$.
- Zwei symmetrische Entscheiderschwellen bei ±G.
+
- Two symmetric decision thresholds at&nbsp; $±G$.
- Eine Entscheiderschwelle bei $G_{1} = 0$ und eine zweite bei $G_{2} = 0.5$.
+
- One decision threshold at&nbsp; $G_{1} = 0$&nbsp; and a second at&nbsp; $G_{2} = 0.5$.
  
{Wie groß ist die BSC–Verfälschungswahrscheinlichkeit $\varepsilon$ mit $sigma$ = 0.4?
+
{What is the BSC falsification probability&nbsp; $\varepsilon$&nbsp; with&nbsp; $\sigma = 0.4$?
 
|type="{}"}
 
|type="{}"}
$\varepsilon \ = \ $ { 0.62 3% }   %
+
$\varepsilon \ = \ $ { 0.62 3% } $\ \%$
  
{Durch welche Entscheiderschwelle(''n'') entsteht ein BSEC–Modell?
+
{Which decision threshold(s) gives rise to the BSEC model?
 
|type="[]"}
 
|type="[]"}
- Eine Entscheiderschwelle bei G = 0.
+
- One decision threshold at&nbsp; $G = 0$.
+ Zwei symmetrische Entscheiderschwellen bei ±G.
+
+ Two symmetric decision thresholds at&nbsp; $±G$.
- Eine Entscheiderschwelle bei $G_{1} = 0$ und eine zweite bei $G_{2} = 0.5$.
+
- One decision threshold at&nbsp; $G_{1} = 0$&nbsp; and a second at&nbsp; $G_{2} = 0.5$.
  
{Welche BSEC–Parameter ergeben sich mit Schwellen bei ±0.2?
+
{What BSEC parameters result with thresholds at&nbsp; $±0.2$?
 
|type="{}"}
 
|type="{}"}
$\varepsilon \ = \ $ { 0.14 3% }   %
+
$\varepsilon \ = \ $ { 0.14 3% } $ \ \%$
$\lambda \ = \ $ { 2.14 3% }   %
+
$\lambda \ = \ $ { 2.14 3% } $ \ \%$
 
 
 
 
 
 
  
{Durch welche Entscheiderschwelle(''n'') entsteht das BEC–Modell? Beachten Sie bitte den letzten Hinweis auf der Angabenseite.
+
{By which decision threshold(s) does the BEC model arise? Please refer to the last note in the information section.
 
|type="[]"}
 
|type="[]"}
- Eine Entscheiderschwelle bei G = 0.
+
- One decision threshold at&nbsp; $G = 0$.
+ Zwei symmetrische Entscheiderschwellen bei ±G.
+
+ Two symmetric decision thresholds at&nbsp; $±G$.
- Eine Entscheiderschwelle bei $G_{1} = 0$ und eine zweite bei $G_{2} = 0.5$.
+
- One decision threshold at&nbsp; $G_{1} = 0$&nbsp; and a second at&nbsp; $G_{2} = 0.5$.
  
{Berechnen Sie den BEC–Parameter $\lambda$ für Entscheiderschwellen bei ±0.6.
+
{Calculate the BEC parameter&nbsp; $\lambda$&nbsp; for decision thresholds at&nbsp; $G = ±0.6$.
 
|type="{}"}
 
|type="{}"}
$\lambda \ = \ $ { 15.87 3% }   %
+
$\lambda \ = \ $ { 15.87 3% } $ \ \%$
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig ist die <u>Antwort 1</u>. Das BSC–Modell basiert auf einer einzigen Entscheiderschwelle. Wegen der Eigenschaft ''Symmetric'' liegt diese bei ''G'' = 0.
+
'''(1)'''&nbsp; Correct is&nbsp; <u>answer 1</u>:
 +
*The BSC model is based on a single decision threshold.&nbsp; Because of the&nbsp; "symmetric"&nbsp; property,&nbsp; this is at&nbsp; $G = 0$.
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; The probability that a Gaussian random variable with standard deviation&nbsp; $\sigma$&nbsp; is greater than&nbsp; $+1$&nbsp; or less than&nbsp; $-1$&nbsp; is given&nbsp; by&nbsp; $\varepsilon = {\rm Q} (1/ \sigma)$.
 +
*With&nbsp; $\sigma= 0.4$&nbsp; it follows: &nbsp; $\varepsilon = {\rm Q}(2.5) \ \underline { = 0.62\, \%}.$
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; The correct answer here is&nbsp; <u>answer 2</u>:
 +
*In the BSEC model,&nbsp; there are three decision regions,&nbsp; one each for symbols&nbsp; $0$&nbsp; and $1$,&nbsp; and another for&nbsp; "Erasure"&nbsp; $\rm (E$:&nbsp; no decision possible$)$.
 +
*To do this,&nbsp; we need two thresholds that must be symmetric about&nbsp; $0$.
 +
*If this were not so,&nbsp; different results would result for the symbols&nbsp; $0$&nbsp; and&nbsp; $1$.
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; Let&nbsp; $y_{\rm A} = \tilde{x}+ n$&nbsp; hold.&nbsp; A wrong decision results in this case for the noise term
 +
*$n > +1.2$ &nbsp; if &nbsp; $\tilde{x} = -1$ &nbsp; ⇒ &nbsp; $x = 1$,
 +
*$n < -1.2$, &nbsp; if &nbsp; $\tilde{x} = +1$ &nbsp; ⇒ &nbsp; $x = 0$.
  
'''(2)'''&nbsp; Die Wahrscheinlickeit, dass eine Gaußsche Zufallsgröße mit Streuung ''$\sigma$'' größer ist als 1 oder kleiner ist als –1,  ergibt sich gemäß der Angabe zu $\varepsilon = {\rm Q} (1/ \sigma). {\rm Mit}  \ \sigma= 0.4$ folgt daraus $\varepsilon = {\rm Q}(2.5)  \ \underline { = 0.62\, \%}$.
 
  
 +
In both cases,&nbsp; we obtain for the falsification probability:
 +
:$$ε = {\rm Q}(1.2/0.4) = {\rm Q}(3) \hspace{0.15cm} \underline{=0.14 \%}.$$
 +
*An&nbsp; "Erasure"&nbsp; (no decision)&nbsp; results for&nbsp; $-0.2 < y_{\rm A} < +0.2$.
 +
*Based on&nbsp; $\tilde{x} = -1$,&nbsp; it thus holds:
 +
:$$\lambda \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Pr}(0.8 < n < 1.2) = {\rm Pr}(n > 0.8) - {\rm Pr}(n > 1.2) = {\rm Q}(2) - {\rm Q}(3) \approx 2.28\,\% - 0.14\,\% \hspace{0.15cm} \underline {\approx 2.14\,\%} \hspace{0.05cm}.$$
  
'''(3)'''&nbsp; Richtig ist hier die <u>Antwort 2</u>. Beim BSEC–Modell gibt es drei Entscheidungsgebiete: je eines für die Symbole 0 und 1 und ein weiteres für Erasure (E: keine Entscheidung möglich). Dazu benötigt man zwei Schwellen, die symmetrisch um 0 liegen müssen. Wenn dem nicht so wäre, ergäben sich unterschiedliche Ergebnisse für die Symbole 0 und 1.
 
  
 +
'''(5)'''&nbsp; Here,&nbsp; <u>answer 2</u>&nbsp; is correct:
 +
*Also in the BEC model there are two thresholds symmetric about&nbsp; $0$.
 +
*The difference with the BSEC model is that the falsification probability&nbsp; $\varepsilon = 0$&nbsp; (more precisely,&nbsp; $\varepsilon < 0.5 \cdot 10^{-4}$)&nbsp; arises either because
 +
:*the safety range&nbsp; $(±G)$&nbsp; is chosen larger than in the BSEC model,&nbsp; or
 +
:*the AWGN noise has a smaller standard deviation&nbsp; $σ$.
  
'''(4)'''&nbsp; Es gelte $y_{\rm A}$ = ''x̃'' + ''n''. Eine falsche Entscheidung ergibt sich in diesem Fall für den Rauschterm
 
*''n'' > +1.2,  falls ''x̃'' = –1  ⇒  ''x'' = 1,
 
*''n'' < –1.2,  falls ''x̃'' = +1  ⇒  ''x'' = 0.
 
In beiden Fällen erhält man für die Verfälschungswahrscheinlichkeit ε = Q(1.2/0.4) = Q(3) $<u>= 0.14 %</u>$.
 
Ein Erasure (keine Entscheidung) ergibt sich für –0.2 < $y_{\rm A}$ < +0.2. Ausgehend von ''x̃'' = –1 gilt somit: $$\lambda \hspace{-0.15cm} \ =  \ \hspace{-0.15cm} {\rm Pr}(0.8 < n < 1.2) = {\rm Pr}(n > 0.8) - {\rm Pr}(n > 1.2) =\\ $$ $$\hspace{-0.15cm}\  = \  \hspace{-0.15cm}{\rm Q}(2) - {\rm Q}(3) \approx 2.28\,\% - 0.14\,\% \hspace{0.15cm} \underline {\approx 2.14\,\%} \hspace{0.05cm}.$$
 
  
'''(5)'''&nbsp;
+
'''(6)'''&nbsp; In the BEC model,&nbsp; the falsification probability is negligible:
 +
:$$\varepsilon = {\rm Q}(1.6/0.4) = {\rm Q}(4)\approx 0.32 \cdot 10^{-4} \approx 0 \hspace{0.05cm}.$$
 +
*This means:&nbsp; One can actually assume the BEC model here.
 +
*For the&nbsp; "Erasure"&nbsp; probability,&nbsp; the following holds:
 +
:$${\it \lambda} \hspace{-0.15cm} \ =  \ \hspace{-0.15cm} {\rm Pr}(0.4 < n < 1.6) = {\rm Pr}(n > 0.4) - {\rm Pr}(n > 1.6) ={\rm Q}(1) - {\rm Q}(4) \approx {\rm Q}(1) \hspace{0.15cm} \underline {= 15.87\,\%} \hspace{0.05cm}.$$
  
'''6.'''
 
'''7.'''
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu  Kanalcodierung|^1.2 Kanalmodelle und Entscheiderstrukturen
+
[[Category:Channel Coding: Exercises|^1.2 Channel and Decision Device^]]
^]]
 

Latest revision as of 17:57, 23 January 2023

Channel models  "BSEC"  and  "AWGN"

The theory section for this chapter covers the following digital channel models:


The upper graph shows the BSEC model.  Two other channel models can be derived from it:

  • With  $λ = 0$  the BSC model is obtained.
  • With  $\varepsilon = 0$  the BEC model results.


The lower graph shows the relationship between the discrete BSEC model and the analog AWGN model.  To avoid confusion,  we denote the  (analog)  output signal of the AWGN model by  $y_{\rm A}$,  where with the noise term  $n$  holds:

$$y_{\rm A} = \tilde{x}+ n.$$

The tilde indicates the bipolar description of the digital signal.  It holds:

  • $\tilde{x} = +1$,   if  $x = 0$,
  • $\tilde{x} = -1$,   if  $x = 1$.


One can see the ternary output variable  $y \in \{0, 1, \rm E\}$,  which is obtained from the AWGN model by dividing it into three areas.  For this,  the decision thresholds  $G_0$  and  $G_1$  are needed.

The event   $y = \rm E$  ("Erasure")  states that the decision is so uncertain that as result neither  $y = 0$   nor  $y = 1$   seems justified.



Hints:

  • The standard deviation  (root mean square)  of the AWGN noise  $n$  is assumed to  $\sigma = 0.4$  for the entire exercise.
  • The probability that the random variable  $n$  is greater than  $A$  or less than  $-A$  is given by the complementary Gaussian error integral  ${\rm Q}(x)$  as follows:
$${\rm Pr}(n > A) = {\rm Pr}(n < -A) = {\rm Q}(A/\sigma)\hspace{0.05cm}.$$
  • Please note further:   Starting from the AWGN model,  the falsification probability  $\varepsilon = 0$  is actually impossible.
  • For this task,  we make do by specifying all probabilities as percentages with two decimal places.  Thus  $\varepsilon \le 0.5 \cdot 10^{-4}=0.005\%$  can be approximated by  $\varepsilon \approx 0$.


The following are some numerical values of the Q-function:

$$ {\rm Q}(0) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 50.0\%\hspace{0.05cm}, \hspace{0.2cm}{\rm Q}(0.5) \ = \ 30.85\%\hspace{0.05cm}, \hspace{0.2cm}{\rm Q}(1) \ = \ 15.87\% \hspace{0.05cm}, \hspace{0.2cm}{\rm Q}(1.5) \ = \ 6.68\%\hspace{0.05cm},$$
$${\rm Q}(2) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 2.28\%\hspace{0.05cm}, \hspace{0.2cm}{\rm Q}(2.5) \ = \hspace{0.3cm} 0.62\%\hspace{0.05cm}, \hspace{0.2cm}{\rm Q}(3) \ = \hspace{0.3cm} 0.14\% \hspace{0.05cm}, \hspace{0.2cm}{\rm Q}(3.5) \ = \hspace{0.3cm} 0.02\% \hspace{0.05cm}, \hspace{0.2cm}{\rm Q}(4) \approx 0 \hspace{0.05cm}.$$


Questions

1

Which decision threshold(s) gives rise to the BSC model?

One decision threshold at  $G = 0$.
Two symmetric decision thresholds at  $±G$.
One decision threshold at  $G_{1} = 0$  and a second at  $G_{2} = 0.5$.

2

What is the BSC falsification probability  $\varepsilon$  with  $\sigma = 0.4$?

$\varepsilon \ = \ $

$\ \%$

3

Which decision threshold(s) gives rise to the BSEC model?

One decision threshold at  $G = 0$.
Two symmetric decision thresholds at  $±G$.
One decision threshold at  $G_{1} = 0$  and a second at  $G_{2} = 0.5$.

4

What BSEC parameters result with thresholds at  $±0.2$?

$\varepsilon \ = \ $

$ \ \%$
$\lambda \ = \ $

$ \ \%$

5

By which decision threshold(s) does the BEC model arise? Please refer to the last note in the information section.

One decision threshold at  $G = 0$.
Two symmetric decision thresholds at  $±G$.
One decision threshold at  $G_{1} = 0$  and a second at  $G_{2} = 0.5$.

6

Calculate the BEC parameter  $\lambda$  for decision thresholds at  $G = ±0.6$.

$\lambda \ = \ $

$ \ \%$


Solution

(1)  Correct is  answer 1:

  • The BSC model is based on a single decision threshold.  Because of the  "symmetric"  property,  this is at  $G = 0$.


(2)  The probability that a Gaussian random variable with standard deviation  $\sigma$  is greater than  $+1$  or less than  $-1$  is given  by  $\varepsilon = {\rm Q} (1/ \sigma)$.

  • With  $\sigma= 0.4$  it follows:   $\varepsilon = {\rm Q}(2.5) \ \underline { = 0.62\, \%}.$


(3)  The correct answer here is  answer 2:

  • In the BSEC model,  there are three decision regions,  one each for symbols  $0$  and $1$,  and another for  "Erasure"  $\rm (E$:  no decision possible$)$.
  • To do this,  we need two thresholds that must be symmetric about  $0$.
  • If this were not so,  different results would result for the symbols  $0$  and  $1$.


(4)  Let  $y_{\rm A} = \tilde{x}+ n$  hold.  A wrong decision results in this case for the noise term

  • $n > +1.2$   if   $\tilde{x} = -1$   ⇒   $x = 1$,
  • $n < -1.2$,   if   $\tilde{x} = +1$   ⇒   $x = 0$.


In both cases,  we obtain for the falsification probability:

$$ε = {\rm Q}(1.2/0.4) = {\rm Q}(3) \hspace{0.15cm} \underline{=0.14 \%}.$$
  • An  "Erasure"  (no decision)  results for  $-0.2 < y_{\rm A} < +0.2$.
  • Based on  $\tilde{x} = -1$,  it thus holds:
$$\lambda \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Pr}(0.8 < n < 1.2) = {\rm Pr}(n > 0.8) - {\rm Pr}(n > 1.2) = {\rm Q}(2) - {\rm Q}(3) \approx 2.28\,\% - 0.14\,\% \hspace{0.15cm} \underline {\approx 2.14\,\%} \hspace{0.05cm}.$$


(5)  Here,  answer 2  is correct:

  • Also in the BEC model there are two thresholds symmetric about  $0$.
  • The difference with the BSEC model is that the falsification probability  $\varepsilon = 0$  (more precisely,  $\varepsilon < 0.5 \cdot 10^{-4}$)  arises either because
  • the safety range  $(±G)$  is chosen larger than in the BSEC model,  or
  • the AWGN noise has a smaller standard deviation  $σ$.


(6)  In the BEC model,  the falsification probability is negligible:

$$\varepsilon = {\rm Q}(1.6/0.4) = {\rm Q}(4)\approx 0.32 \cdot 10^{-4} \approx 0 \hspace{0.05cm}.$$
  • This means:  One can actually assume the BEC model here.
  • For the  "Erasure"  probability,  the following holds:
$${\it \lambda} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Pr}(0.4 < n < 1.6) = {\rm Pr}(n > 0.4) - {\rm Pr}(n > 1.6) ={\rm Q}(1) - {\rm Q}(4) \approx {\rm Q}(1) \hspace{0.15cm} \underline {= 15.87\,\%} \hspace{0.05cm}.$$