Difference between revisions of "Aufgaben:Exercise 1.3: Channel Models BSC - BEC - BSEC - AWGN"

From LNTwww
m (Text replacement - "”" to """)
 
(7 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Kanalmodelle und Entscheiderstrukturen
+
{{quiz-Header|Buchseite=Channel Coding/Channel Models and Decision Structures
  
 
}}
 
}}
  
[[File:P_ID2383__KC_A_1_3_neu.png|right|frame|Kanalmodelle  "BSEC"  und  "AWGN"]]
+
[[File:EN_KC_A_1_3.png|right|frame|Channel models  "BSEC"  and  "AWGN"]]
Im Theorieteil zu diesem Kapitel werden die folgenden digitalen Kanalmodelle behandelt:
+
The theory section for this chapter covers the following digital channel models:
*[[Channel_Coding/Kanalmodelle_und_Entscheiderstrukturen#Binary_Symmetric_Channel_.E2.80.93_BSC|Binary Symmetric Channel]]  (BSC),
+
*[[Channel_Coding/Channel_Models_and_Decision_Structures#Binary_Symmetric_Channel_.E2.80.93_BSC|Binary Symmetric Channel]]  $\rm (BSC)$,
*[[Channel_Coding/Kanalmodelle_und_Entscheiderstrukturen#Binary_Erasure_Channel_.E2.80.93_BEC|Binary Erasure Channel]]  (BEC),
+
*[[Channel_Coding/Channel_Models_and_Decision_Structures#Binary_Erasure_Channel_.E2.80.93_BEC|Binary Erasure Channel]]  $\rm (BEC)$,
*[[Channel_Coding/Kanalmodelle_und_Entscheiderstrukturen#Binary_Symmetric_Error_.26_Erasure_Channel_.E2.80.93_BSEC|Binary Symmetric Error & Erasure Channel]]  (BSEC).
+
*[[Channel_Coding/Channel_Models_and_Decision_Structures#Binary_Symmetric_Error_.26_Erasure_Channel_.E2.80.93_BSEC|Binary Symmetric Error & Erasure Channel]]  $\rm (BSEC)$.
  
  
Die obere Grafik zeigt das BSEC–Modell. Daraus lassen sich zwei andere Kanalmodelle ableiten:
+
The upper graph shows the BSEC model.  Two other channel models can be derived from it:
*Mit  $λ = 0$  ergibt sich das BSC–Modell.
+
*With  $λ = 0$  the BSC model is obtained.
*Mit  $\varepsilon = 0$  ergibt sich das BEC–Modell.
+
*With  $\varepsilon = 0$  the BEC model results.
  
  
Die untere Grafik zeigt den Zusammenhang zwischen dem diskreten BSEC–Modell und dem analogen AWGN–Kanalmodell. Um Verwechslungen zu vermeiden, bezeichnen wir das (analoge) Ausgangssignal des AWGN–Kanals mit  $y_{\rm A}$, wobei mit dem Rauschterm  $n$  gilt:  
+
The lower graph shows the relationship between the discrete BSEC model and the analog AWGN model.  To avoid confusion,  we denote the  (analog)  output signal of the AWGN model by  $y_{\rm A}$,  where with the noise term  $n$  holds:  
 
:$$y_{\rm A} = \tilde{x}+ n.$$
 
:$$y_{\rm A} = \tilde{x}+ n.$$
  
Die Tilde weist auf die bipolare Beschreibung des Digitalsignals hin. Es gilt:
+
The tilde indicates the bipolar description of the digital signal.  It holds:
*$\tilde{x} = +1$, falls  $x = 0$,  
+
*$\tilde{x} = +1$,   if  $x = 0$,  
*$\tilde{x} = -1$, falls  $x = 1$.  
+
*$\tilde{x} = -1$,   if  $x = 1$.  
  
  
Man erkennt die ternäre Ausgangsgröße  $y \in \{0, 1, \rm E\}$, die sich aus dem AWGN–Modell durch die Unterteilung in drei Bereiche ergibt. Hierzu werden die Entscheiderschwellen  $G_0$  und  $G_1$  benötigt.
+
One can see the ternary output variable  $y \in \{0, 1, \rm E\}$,  which is obtained from the AWGN model by dividing it into three areas.  For this,  the decision thresholds  $G_0$  and  $G_1$  are needed.
  
Das Ereignis   $y = \rm E$  ("''Erasure''") sagt aus, dass die Entscheidung so unsicher ist, dass als Ergebnis weder  $y = 0$  noch  $y = 1$  gerechtfertigt erscheint. In deutschen Fachbüchern spricht man von einer ''"Auslöschung"''.
+
The event   $y = \rm E$  ("Erasure")  states that the decision is so uncertain that as result neither  $y = 0$   nor  $y = 1$   seems justified.
  
  
Line 31: Line 31:
  
  
 
+
Hints:
''Hinweise:''
+
*This exercise belongs to the chapter  [[Channel_Coding/Channel_Models_and_Decision_Structures|"Channel Models and Decision Structures"]].
*Die Aufgabe gehört zum Kapitel  [[Channel_Coding/Kanalmodelle_und_Entscheiderstrukturen|Kanalmodelle und Entscheiderstrukturen]].  
+
*Die Streuung des AWGN–Rauschens  $n$  wird für die gesamte Aufgabe zu  $\sigma = 0.4$  angenommen.  
+
*The standard deviation  (root mean square)  of the AWGN noise  $n$  is assumed to  $\sigma = 0.4$  for the entire exercise.
*Die Wahrscheinlichkeit, dass die Zufallsgröße  $n$  größer ist als  $A$  oder kleiner als  $–A$, ergibt sich mit dem komplementären Gaußschen Fehlerintegral  ${\rm Q}(x)$  wie folgt:
+
 +
*The probability that the random variable  $n$  is greater than  $A$  or less than  $-A$  is given by the complementary Gaussian error integral  ${\rm Q}(x)$  as follows:
 
:$${\rm Pr}(n > A) = {\rm Pr}(n < -A) = {\rm Q}(A/\sigma)\hspace{0.05cm}.$$
 
:$${\rm Pr}(n > A) = {\rm Pr}(n < -A) = {\rm Q}(A/\sigma)\hspace{0.05cm}.$$
*Bitte beachten Sie weiter: &nbsp; Ausgehend vom AWGN–Kanal ist die Verfälschungswahrscheinlichkeit&nbsp; $\varepsilon = 0$&nbsp; eigentlich nicht möglich.  
+
*Please note further: &nbsp; Starting from the AWGN model,&nbsp; the falsification probability&nbsp; $\varepsilon = 0$&nbsp; is actually impossible.
*Für diese Aufgabe behelfen wir uns dadurch, dass alle Wahrscheinlichkeiten in Prozent mit zwei Nachkommastellen angegeben werden sollen. Damit kann&nbsp; $\varepsilon < 0.5 · 10^{-4}$&nbsp; durch&nbsp; $\varepsilon \approx 0$&nbsp; angenähert werden.
+
 +
*For this task,&nbsp; we make do by specifying all probabilities as percentages with two decimal places.&nbsp; Thus&nbsp; $\varepsilon \le 0.5 \cdot 10^{-4}=0.005\%$&nbsp; can be approximated by&nbsp; $\varepsilon \approx 0$.
 
   
 
   
  
  
Es folgen noch einige Zahlenwerte der Q–Funktion:
+
The following are some numerical values of the Q-function:
 
:$$ {\rm Q}(0) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 50.0\%\hspace{0.05cm}, \hspace{0.2cm}{\rm Q}(0.5) \ = \ 30.85\%\hspace{0.05cm}, \hspace{0.2cm}{\rm Q}(1) \ = \ 15.87\% \hspace{0.05cm}, \hspace{0.2cm}{\rm Q}(1.5) \ = \ 6.68\%\hspace{0.05cm},$$
 
:$$ {\rm Q}(0) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 50.0\%\hspace{0.05cm}, \hspace{0.2cm}{\rm Q}(0.5) \ = \ 30.85\%\hspace{0.05cm}, \hspace{0.2cm}{\rm Q}(1) \ = \ 15.87\% \hspace{0.05cm}, \hspace{0.2cm}{\rm Q}(1.5) \ = \ 6.68\%\hspace{0.05cm},$$
 
:$${\rm Q}(2) \hspace{-0.1cm} \ = \  \hspace{-0.1cm} 2.28\%\hspace{0.05cm}, \hspace{0.2cm}{\rm Q}(2.5) \ = \hspace{0.3cm} 0.62\%\hspace{0.05cm}, \hspace{0.2cm}{\rm Q}(3) \ = \hspace{0.3cm} 0.14\% \hspace{0.05cm}, \hspace{0.2cm}{\rm Q}(3.5) \ = \hspace{0.3cm} 0.02\% \hspace{0.05cm}, \hspace{0.2cm}{\rm Q}(4) \approx 0 \hspace{0.05cm}.$$
 
:$${\rm Q}(2) \hspace{-0.1cm} \ = \  \hspace{-0.1cm} 2.28\%\hspace{0.05cm}, \hspace{0.2cm}{\rm Q}(2.5) \ = \hspace{0.3cm} 0.62\%\hspace{0.05cm}, \hspace{0.2cm}{\rm Q}(3) \ = \hspace{0.3cm} 0.14\% \hspace{0.05cm}, \hspace{0.2cm}{\rm Q}(3.5) \ = \hspace{0.3cm} 0.02\% \hspace{0.05cm}, \hspace{0.2cm}{\rm Q}(4) \approx 0 \hspace{0.05cm}.$$
Line 48: Line 50:
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Durch welche Entscheiderschwelle(n) entsteht das BSC–Modell?
+
{Which decision threshold(s) gives rise to the BSC model?
 
|type="[]"}
 
|type="[]"}
+ Eine Entscheiderschwelle bei&nbsp; $G = 0$.
+
+ One decision threshold at&nbsp; $G = 0$.
- Zwei symmetrische Entscheiderschwellen bei&nbsp; $±G$.
+
- Two symmetric decision thresholds at&nbsp; $±G$.
- Eine Entscheiderschwelle bei&nbsp; $G_{1} = 0$&nbsp; und eine zweite bei&nbsp; $G_{2} = 0.5$.
+
- One decision threshold at&nbsp; $G_{1} = 0$&nbsp; and a second at&nbsp; $G_{2} = 0.5$.
  
{Wie groß ist die BSC–Verfälschungswahrscheinlichkeit&nbsp; $\varepsilon$&nbsp; mit&nbsp; $\sigma = 0.4$?
+
{What is the BSC falsification probability&nbsp; $\varepsilon$&nbsp; with&nbsp; $\sigma = 0.4$?
 
|type="{}"}
 
|type="{}"}
$\varepsilon \ = \ $ { 0.62 3% } $\ \%$
+
$\varepsilon \ = \ $ { 0.62 3% } $\ \%$
  
{Durch welche Entscheiderschwelle(n) entsteht das BSEC–Modell?
+
{Which decision threshold(s) gives rise to the BSEC model?
 
|type="[]"}
 
|type="[]"}
- Eine Entscheiderschwelle bei&nbsp; $G = 0$.
+
- One decision threshold at&nbsp; $G = 0$.
+ Zwei symmetrische Entscheiderschwellen bei&nbsp; $±G$.
+
+ Two symmetric decision thresholds at&nbsp; $±G$.
- Eine Entscheiderschwelle bei&nbsp; $G_{1} = 0$&nbsp; und eine zweite bei&nbsp; $G_{2} = 0.5$.
+
- One decision threshold at&nbsp; $G_{1} = 0$&nbsp; and a second at&nbsp; $G_{2} = 0.5$.
  
{Welche BSEC–Parameter ergeben sich mit Schwellen bei&nbsp; $±0.2$?
+
{What BSEC parameters result with thresholds at&nbsp; $±0.2$?
 
|type="{}"}
 
|type="{}"}
$\varepsilon \ = \ $ { 0.14 3% }   $ \ \%$
+
$\varepsilon \ = \ $ { 0.14 3% } $ \ \%$
$\lambda \ = \ $ { 2.14 3% }   $ \ \%$
+
$\lambda \ = \ $ { 2.14 3% } $ \ \%$
  
{Durch welche Entscheiderschwelle(n) entsteht das BEC–Modell? Beachten Sie bitte den letzten Hinweis auf der Angabenseite.
+
{By which decision threshold(s) does the BEC model arise? Please refer to the last note in the information section.
 
|type="[]"}
 
|type="[]"}
- Eine Entscheiderschwelle bei&nbsp; $G = 0$.
+
- One decision threshold at&nbsp; $G = 0$.
+ Zwei symmetrische Entscheiderschwellen bei&nbsp; $±G$.
+
+ Two symmetric decision thresholds at&nbsp; $±G$.
- Eine Entscheiderschwelle bei&nbsp; $G_{1} = 0$&nbsp; und eine zweite bei&nbsp; $G_{2} = 0.5$.
+
- One decision threshold at&nbsp; $G_{1} = 0$&nbsp; and a second at&nbsp; $G_{2} = 0.5$.
  
{Berechnen Sie den BEC–Parameter&nbsp; $\lambda$&nbsp; für Entscheiderschwellen bei&nbsp; $G = ±0.6$.
+
{Calculate the BEC parameter&nbsp; $\lambda$&nbsp; for decision thresholds at&nbsp; $G = ±0.6$.
 
|type="{}"}
 
|type="{}"}
$\lambda \ = \ $ { 15.87 3% }   $ \ \%$
+
$\lambda \ = \ $ { 15.87 3% } $ \ \%$
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig ist die <u>Antwort 1</u>:  
+
'''(1)'''&nbsp; Correct is&nbsp; <u>answer 1</u>:  
*Das BSC–Modell basiert auf einer einzigen Entscheiderschwelle. Wegen der Eigenschaft ''Symmetric'' liegt diese bei $G = 0$.
+
*The BSC model is based on a single decision threshold.&nbsp; Because of the&nbsp; "symmetric"&nbsp; property,&nbsp; this is at&nbsp; $G = 0$.
  
  
  
'''(2)'''&nbsp; Die Wahrscheinlickeit, dass eine Gaußsche Zufallsgröße mit Streuung ''$\sigma$'' größer ist als $+1$ oder kleiner ist als $–1$,  ergibt sich gemäß der Angabe zu $\varepsilon = {\rm Q} (1/ \sigma)$.  
+
'''(2)'''&nbsp; The probability that a Gaussian random variable with standard deviation&nbsp; $\sigma$&nbsp; is greater than&nbsp; $+1$&nbsp; or less than&nbsp; $-1$&nbsp; is given&nbsp; by&nbsp; $\varepsilon = {\rm Q} (1/ \sigma)$.  
*Mit $\sigma= 0.4$ folgt daraus: &nbsp; $\varepsilon = {\rm Q}(2.5) \ \underline { = 0.62\, \%}.$
+
*With&nbsp; $\sigma= 0.4$&nbsp; it follows: &nbsp; $\varepsilon = {\rm Q}(2.5) \ \underline { = 0.62\, \%}.$
  
  
  
'''(3)'''&nbsp; Richtig ist hier die <u>Antwort 2</u>:  
+
'''(3)'''&nbsp; The correct answer here is&nbsp; <u>answer 2</u>:  
*Beim BSEC–Modell gibt es drei Entscheidungsgebiete, je eines für die Symbole $0$ und $1$ und ein weiteres für ''Erasure'' ($\rm E$: keine Entscheidung möglich).  
+
*In the BSEC model,&nbsp; there are three decision regions,&nbsp; one each for symbols&nbsp; $0$&nbsp; and $1$,&nbsp; and another for&nbsp; "Erasure"&nbsp; $\rm (E$:&nbsp; no decision possible$)$.  
*Dazu benötigt man zwei Schwellen, die symmetrisch um $0$ liegen müssen.  
+
*To do this,&nbsp; we need two thresholds that must be symmetric about&nbsp; $0$.  
*Wenn dem nicht so wäre, ergäben sich unterschiedliche Ergebnisse für die Symbole $0$ und $1$.
+
*If this were not so,&nbsp; different results would result for the symbols&nbsp; $0$&nbsp; and&nbsp; $1$.
  
  
  
'''(4)'''&nbsp; Es gelte $y_{\rm A} = \tilde{x}+ n$. Eine falsche Entscheidung ergibt sich in diesem Fall für den Rauschterm
+
'''(4)'''&nbsp; Let&nbsp; $y_{\rm A} = \tilde{x}+ n$&nbsp; hold.&nbsp; A wrong decision results in this case for the noise term
*$n > +1.2$,  falls $\tilde{x} = -1$ &nbsp; ⇒ &nbsp; $x = 1$,
+
*$n > +1.2$ &nbsp; if &nbsp; $\tilde{x} = -1$ &nbsp; ⇒ &nbsp; $x = 1$,
*$n < -1.2$,   falls $\tilde{x} = +1$ &nbsp; ⇒ &nbsp; $x = 0$.
+
*$n < -1.2$, &nbsp; if &nbsp; $\tilde{x} = +1$ &nbsp; ⇒ &nbsp; $x = 0$.
  
  
In beiden Fällen erhält man für die Verfälschungswahrscheinlichkeit:  
+
In both cases,&nbsp; we obtain for the falsification probability:  
 
:$$ε = {\rm Q}(1.2/0.4) = {\rm Q}(3) \hspace{0.15cm} \underline{=0.14 \%}.$$
 
:$$ε = {\rm Q}(1.2/0.4) = {\rm Q}(3) \hspace{0.15cm} \underline{=0.14 \%}.$$
*Ein ''Erasure'' (keine Entscheidung) ergibt sich für $–0.2 < y_{\rm A} < +0.2$.  
+
*An&nbsp; "Erasure"&nbsp; (no decision)&nbsp; results for&nbsp; $-0.2 < y_{\rm A} < +0.2$.  
*Ausgehend von $\tilde{x} = -1$ gilt somit:  
+
*Based on&nbsp; $\tilde{x} = -1$,&nbsp; it thus holds:  
:$$\lambda \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Pr}(0.8 < n < 1.2) = {\rm Pr}(n > 0.8) - {\rm Pr}(n > 1.2) = {\rm Q}(2) - {\rm Q}(3) \approx 2.28\,\% - 0.14\,\% \hspace{0.15cm} \underline {\approx 2.14\,\%} \hspace{0.05cm}.$$
+
:$$\lambda \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Pr}(0.8 < n < 1.2) = {\rm Pr}(n > 0.8) - {\rm Pr}(n > 1.2) = {\rm Q}(2) - {\rm Q}(3) \approx 2.28\,\% - 0.14\,\% \hspace{0.15cm} \underline {\approx 2.14\,\%} \hspace{0.05cm}.$$
  
  
'''(5)'''&nbsp; Hier ist ebenfalls die <u>Antwort 2</u> richtig:  
+
'''(5)'''&nbsp; Here,&nbsp; <u>answer 2</u>&nbsp; is correct:  
*Auch beim BEC–Modell gibt es zwei um $0$ symmetrische Schwellen.  
+
*Also in the BEC model there are two thresholds symmetric about&nbsp; $0$.  
*Der Unterschied zum BSEC–Modell ist, dass sich die Verfälschungswahrscheinlichkeit $\varepsilon = 0$ (genauer gesagt: $\varepsilon < 0.5 · 10^{–4}$) ergibt, entweder, weil
+
*The difference with the BSEC model is that the falsification probability&nbsp; $\varepsilon = 0$&nbsp; (more precisely,&nbsp; $\varepsilon < 0.5 \cdot 10^{-4}$)&nbsp; arises either because
:*der Sicherheitsbereich $(±G)$ größer gewählt ist als beim BSEC–Modell, oder
+
:*the safety range&nbsp; $(±G)$&nbsp; is chosen larger than in the BSEC model,&nbsp; or
:*das AWGN–Rauschen eine kleinere Streuung $σ$ aufweist.
+
:*the AWGN noise has a smaller standard deviation&nbsp; $σ$.
  
  
'''(6)'''&nbsp; Beim BEC–Modell ist die Verfälschungswahrscheinlichkeit vernachlässigbar:
+
'''(6)'''&nbsp; In the BEC model,&nbsp; the falsification probability is negligible:
 
:$$\varepsilon = {\rm Q}(1.6/0.4) = {\rm Q}(4)\approx 0.32 \cdot 10^{-4} \approx 0 \hspace{0.05cm}.$$
 
:$$\varepsilon = {\rm Q}(1.6/0.4) = {\rm Q}(4)\approx 0.32 \cdot 10^{-4} \approx 0 \hspace{0.05cm}.$$
*Das heißt: Man kann hier tatsächlich vom BEC–Modell ausgehen.  
+
*This means:&nbsp; One can actually assume the BEC model here.  
*Für die ''Erasure''–Wahrscheinlichkeit gilt dabei:
+
*For the&nbsp; "Erasure"&nbsp; probability,&nbsp; the following holds:
 
:$${\it \lambda} \hspace{-0.15cm} \ =  \ \hspace{-0.15cm} {\rm Pr}(0.4 < n < 1.6) = {\rm Pr}(n > 0.4) - {\rm Pr}(n > 1.6) ={\rm Q}(1) - {\rm Q}(4) \approx {\rm Q}(1) \hspace{0.15cm} \underline {= 15.87\,\%} \hspace{0.05cm}.$$
 
:$${\it \lambda} \hspace{-0.15cm} \ =  \ \hspace{-0.15cm} {\rm Pr}(0.4 < n < 1.6) = {\rm Pr}(n > 0.4) - {\rm Pr}(n > 1.6) ={\rm Q}(1) - {\rm Q}(4) \approx {\rm Q}(1) \hspace{0.15cm} \underline {= 15.87\,\%} \hspace{0.05cm}.$$
  
Line 132: Line 134:
  
  
[[Category:Channel Coding: Exercises|^1.2 Kanal und Entscheiderstrukturen
+
[[Category:Channel Coding: Exercises|^1.2 Channel and Decision Device^]]
^]]
 

Latest revision as of 17:57, 23 January 2023

Channel models  "BSEC"  and  "AWGN"

The theory section for this chapter covers the following digital channel models:


The upper graph shows the BSEC model.  Two other channel models can be derived from it:

  • With  $λ = 0$  the BSC model is obtained.
  • With  $\varepsilon = 0$  the BEC model results.


The lower graph shows the relationship between the discrete BSEC model and the analog AWGN model.  To avoid confusion,  we denote the  (analog)  output signal of the AWGN model by  $y_{\rm A}$,  where with the noise term  $n$  holds:

$$y_{\rm A} = \tilde{x}+ n.$$

The tilde indicates the bipolar description of the digital signal.  It holds:

  • $\tilde{x} = +1$,   if  $x = 0$,
  • $\tilde{x} = -1$,   if  $x = 1$.


One can see the ternary output variable  $y \in \{0, 1, \rm E\}$,  which is obtained from the AWGN model by dividing it into three areas.  For this,  the decision thresholds  $G_0$  and  $G_1$  are needed.

The event   $y = \rm E$  ("Erasure")  states that the decision is so uncertain that as result neither  $y = 0$   nor  $y = 1$   seems justified.



Hints:

  • The standard deviation  (root mean square)  of the AWGN noise  $n$  is assumed to  $\sigma = 0.4$  for the entire exercise.
  • The probability that the random variable  $n$  is greater than  $A$  or less than  $-A$  is given by the complementary Gaussian error integral  ${\rm Q}(x)$  as follows:
$${\rm Pr}(n > A) = {\rm Pr}(n < -A) = {\rm Q}(A/\sigma)\hspace{0.05cm}.$$
  • Please note further:   Starting from the AWGN model,  the falsification probability  $\varepsilon = 0$  is actually impossible.
  • For this task,  we make do by specifying all probabilities as percentages with two decimal places.  Thus  $\varepsilon \le 0.5 \cdot 10^{-4}=0.005\%$  can be approximated by  $\varepsilon \approx 0$.


The following are some numerical values of the Q-function:

$$ {\rm Q}(0) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 50.0\%\hspace{0.05cm}, \hspace{0.2cm}{\rm Q}(0.5) \ = \ 30.85\%\hspace{0.05cm}, \hspace{0.2cm}{\rm Q}(1) \ = \ 15.87\% \hspace{0.05cm}, \hspace{0.2cm}{\rm Q}(1.5) \ = \ 6.68\%\hspace{0.05cm},$$
$${\rm Q}(2) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 2.28\%\hspace{0.05cm}, \hspace{0.2cm}{\rm Q}(2.5) \ = \hspace{0.3cm} 0.62\%\hspace{0.05cm}, \hspace{0.2cm}{\rm Q}(3) \ = \hspace{0.3cm} 0.14\% \hspace{0.05cm}, \hspace{0.2cm}{\rm Q}(3.5) \ = \hspace{0.3cm} 0.02\% \hspace{0.05cm}, \hspace{0.2cm}{\rm Q}(4) \approx 0 \hspace{0.05cm}.$$


Questions

1

Which decision threshold(s) gives rise to the BSC model?

One decision threshold at  $G = 0$.
Two symmetric decision thresholds at  $±G$.
One decision threshold at  $G_{1} = 0$  and a second at  $G_{2} = 0.5$.

2

What is the BSC falsification probability  $\varepsilon$  with  $\sigma = 0.4$?

$\varepsilon \ = \ $

$\ \%$

3

Which decision threshold(s) gives rise to the BSEC model?

One decision threshold at  $G = 0$.
Two symmetric decision thresholds at  $±G$.
One decision threshold at  $G_{1} = 0$  and a second at  $G_{2} = 0.5$.

4

What BSEC parameters result with thresholds at  $±0.2$?

$\varepsilon \ = \ $

$ \ \%$
$\lambda \ = \ $

$ \ \%$

5

By which decision threshold(s) does the BEC model arise? Please refer to the last note in the information section.

One decision threshold at  $G = 0$.
Two symmetric decision thresholds at  $±G$.
One decision threshold at  $G_{1} = 0$  and a second at  $G_{2} = 0.5$.

6

Calculate the BEC parameter  $\lambda$  for decision thresholds at  $G = ±0.6$.

$\lambda \ = \ $

$ \ \%$


Solution

(1)  Correct is  answer 1:

  • The BSC model is based on a single decision threshold.  Because of the  "symmetric"  property,  this is at  $G = 0$.


(2)  The probability that a Gaussian random variable with standard deviation  $\sigma$  is greater than  $+1$  or less than  $-1$  is given  by  $\varepsilon = {\rm Q} (1/ \sigma)$.

  • With  $\sigma= 0.4$  it follows:   $\varepsilon = {\rm Q}(2.5) \ \underline { = 0.62\, \%}.$


(3)  The correct answer here is  answer 2:

  • In the BSEC model,  there are three decision regions,  one each for symbols  $0$  and $1$,  and another for  "Erasure"  $\rm (E$:  no decision possible$)$.
  • To do this,  we need two thresholds that must be symmetric about  $0$.
  • If this were not so,  different results would result for the symbols  $0$  and  $1$.


(4)  Let  $y_{\rm A} = \tilde{x}+ n$  hold.  A wrong decision results in this case for the noise term

  • $n > +1.2$   if   $\tilde{x} = -1$   ⇒   $x = 1$,
  • $n < -1.2$,   if   $\tilde{x} = +1$   ⇒   $x = 0$.


In both cases,  we obtain for the falsification probability:

$$ε = {\rm Q}(1.2/0.4) = {\rm Q}(3) \hspace{0.15cm} \underline{=0.14 \%}.$$
  • An  "Erasure"  (no decision)  results for  $-0.2 < y_{\rm A} < +0.2$.
  • Based on  $\tilde{x} = -1$,  it thus holds:
$$\lambda \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Pr}(0.8 < n < 1.2) = {\rm Pr}(n > 0.8) - {\rm Pr}(n > 1.2) = {\rm Q}(2) - {\rm Q}(3) \approx 2.28\,\% - 0.14\,\% \hspace{0.15cm} \underline {\approx 2.14\,\%} \hspace{0.05cm}.$$


(5)  Here,  answer 2  is correct:

  • Also in the BEC model there are two thresholds symmetric about  $0$.
  • The difference with the BSEC model is that the falsification probability  $\varepsilon = 0$  (more precisely,  $\varepsilon < 0.5 \cdot 10^{-4}$)  arises either because
  • the safety range  $(±G)$  is chosen larger than in the BSEC model,  or
  • the AWGN noise has a smaller standard deviation  $σ$.


(6)  In the BEC model,  the falsification probability is negligible:

$$\varepsilon = {\rm Q}(1.6/0.4) = {\rm Q}(4)\approx 0.32 \cdot 10^{-4} \approx 0 \hspace{0.05cm}.$$
  • This means:  One can actually assume the BEC model here.
  • For the  "Erasure"  probability,  the following holds:
$${\it \lambda} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {\rm Pr}(0.4 < n < 1.6) = {\rm Pr}(n > 0.4) - {\rm Pr}(n > 1.6) ={\rm Q}(1) - {\rm Q}(4) \approx {\rm Q}(1) \hspace{0.15cm} \underline {= 15.87\,\%} \hspace{0.05cm}.$$