Difference between revisions of "Aufgaben:Exercise 1.3Z: Winning with Roulette?"

From LNTwww
Line 31: Line 31:
  
 
<quiz display=simple>
 
<quiz display=simple>
{A player simultaneously places one 1-euro chip on each of the squares „0“, „Rot“ und „Schwarz“.&nbsp; Wie groß ist sein mittlerer Gewinn pro Spiel?
+
{A player simultaneously places one 1-euro chip on each of the squares „0“, „Red“ und „Black“.&nbsp; What are his average winnings per game?
 
|type="{}"}
 
|type="{}"}
 
$G_1 \ =\ $  { -0.083--0.079 } $\ \rm Euro$
 
$G_1 \ =\ $  { -0.083--0.079 } $\ \rm Euro$
  
{Wieviel gewinnt er im Mittel pro Spiel, wenn er stets je&nbsp; $1$&nbsp; Euro auf „Rot“ und „Schwarz“ setzt?
+
{How much does he win on average per game if he always places one&nbsp; $1$&nbsp; Euro chip on each of the squares "Red" and "Black"?
 
|type="{}"}
 
|type="{}"}
 
$G_2 \ =\ $ { -0.056--0.052 } $\ \rm Euro$
 
$G_2 \ =\ $ { -0.056--0.052 } $\ \rm Euro$
  
{Wieviel gewinnt er im Mittel pro Spiel, wenn er stets&nbsp; $1$&nbsp; Euro auf „0“ und&nbsp; $10$&nbsp; Euro auf „Rot“ setzt?
+
{How much does he win on average per game if he always bets&nbsp; $1$&nbsp; on "0" and&nbsp; $10$&nbsp; Euro auf on "Red"?
 
|type="{}"}
 
|type="{}"}
 
$G_3 \ =\ $  { -0.307--0.287 } $\ \rm Euro$
 
$G_3 \ =\ $  { -0.307--0.287 } $\ \rm Euro$
  
{Der Spieler setzt wie im Bild gezeigt. &nbsp; Auf welche Zahl&nbsp; $Z_{\rm Wunsch}$&nbsp; sollte er hoffen?&nbsp; Wie groß wäre dann sein Gewinn?
+
{The player bets as shown in the picture. &nbsp; Which number&nbsp; $Z_{\rm Wunsch}$&nbsp; (''Wunsch'' being German for ''wish/desire'') should he be hoping for?&nbsp; How big would his winnings be then?
 
|type="{}"}
 
|type="{}"}
 
$Z_{\rm Wunsch} \ = \ $ { 23 }
 
$Z_{\rm Wunsch} \ = \ $ { 23 }
 
$G_4 \ =\ $ { 40 3% } $\ \rm Euro$
 
$G_4 \ =\ $ { 40 3% } $\ \rm Euro$
  
{Gibt es eine Setzkombination, so dass der mittlere Gewinn positiv ist?
+
{Is there a betting combination such that the average winnings are positive?
 
|type="()"}
 
|type="()"}
- Ja &nbsp; &rArr; &nbsp; Studium beenden, in die nächste Spielbank gehen.
+
- Yes &nbsp; &rArr; &nbsp; Quit university and go to the next casino.
+ Nein &nbsp; &rArr; &nbsp; Weitermachen mit $\rm LNTwww$.
+
+ No &nbsp; &rArr; &nbsp; Continue with $\rm LNTwww$.
  
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Der Spieler verliert jeweils einen Euro, wenn eine der Zahlen&nbsp; $1$&nbsp; bis&nbsp; $36$&nbsp; gezogen wird.  
+
'''(1)'''&nbsp; The player loses one euro each time one of the numbers&nbsp; $1$&nbsp; to&nbsp; $36$&nbsp; is drawn.  
*Er gewinnt&nbsp; $33$&nbsp; Euro, wenn tats&auml;chlich die&nbsp; $0$&nbsp; getroffen wird. Daraus folgt:
+
*He wins&nbsp; $33$&nbsp; euro, if&nbsp; $0$&nbsp; is drawn. It follows that:
:$$G_1 =\rm  {36}/{37}\cdot (-1\hspace{0.1cm} Euro) + {1}/{37}\cdot (33\hspace{0.1cm} Euro) \hspace{0.15cm}\underline {= - 0.081\hspace{0.1cm} Euro\hspace{0.1cm}(Verlust)}.$$
+
:$$G_1 =\rm  {36}/{37}\cdot (-1\hspace{0.1cm} Euro) + {1}/{37}\cdot (33\hspace{0.1cm} Euro) \hspace{0.15cm}\underline {= - 0.081\hspace{0.1cm} Euro\hspace{0.1cm}(Loss)}.$$
  
  
  
'''(2)'''&nbsp; Der Spieler gewinnt und verliert nichts, wenn nicht die Null gezogen wird.&nbsp; Erscheint die Null, so verliert er seinen Einsatz:  
+
'''(2)'''&nbsp; The player wins and loses nothing unless the zero is drawn.&nbsp; If the zero appears, he loses his bet:  
:$$G_2 = \rm {1}/{37}\cdot (-2\hspace{0.1cm} Euro)\hspace{0.15cm}\underline { = -0.054 \hspace{0.1cm}Euro \hspace{0.1cm}(Verlust)}.$$
+
:$$G_2 = \rm {1}/{37}\cdot (-2\hspace{0.1cm} Euro)\hspace{0.15cm}\underline { = -0.054 \hspace{0.1cm}Euro \hspace{0.1cm}(Loss)}.$$
  
  
  
'''(3)'''&nbsp; Kommt "Rot", so gewinnt er neun Euro.  
+
'''(3)'''&nbsp; If "red" is drawn, he wins nine euro.
*Kommt die Null, gewinnt er effektiv&nbsp; $25$&nbsp; Euro.  
+
*If zero comes, he effectively wins&nbsp; $25$&nbsp; euro.  
*Wird "Schwarz" gezogen, so verliert er seinen gesamten Einsatz von&nbsp; $11$&nbsp; Euro:
+
*If "black" is drawn, he loses his entire bet of&nbsp; $11$&nbsp; euro:
 
:$$G_3 = \rm {18}/{37}\cdot (10 -1) + {1}/{37}\cdot (35-10) + {18}/{37}\cdot (-10-1)\hspace{0.15cm}\underline { = - 0.297\hspace{0.1cm}Euro}.$$
 
:$$G_3 = \rm {18}/{37}\cdot (10 -1) + {1}/{37}\cdot (35-10) + {18}/{37}\cdot (-10-1)\hspace{0.15cm}\underline { = - 0.297\hspace{0.1cm}Euro}.$$
  
  
  
'''(4)'''&nbsp; Den h&ouml;chsten Gewinn erzielt er bei&nbsp; $Z_{\rm Wunsch} \;  \underline{ = 23} $.&nbsp; Dann gewinnen vier seiner fünf Chips:
+
'''(4)'''&nbsp; He gets the highest winning at&nbsp; $Z_{\rm Wunsch} \;  \underline{ = 23} $.&nbsp; Then four of his five chips win:
:$$G_4 = \rm 10\hspace{0.1cm}(da\hspace{0.1cm} Rot ) + 10\hspace{0.1cm}(da\hspace{0.1cm} Passe) + 10\hspace{0.1cm}(da \hspace{0.1cm} Impair) +   
+
:$$G_4 = \rm 10\hspace{0.1cm}(Red) + 10\hspace{0.1cm}(Passe) + 10\hspace{0.1cm}(Impair) +   
\rm 11\hspace{0.1cm}(da\hspace{0.1cm}zwischen \hspace{0.1cm}22\hspace{0.1cm} und \hspace{0.1cm}24) - 1 \hspace{0.1cm}(da \hspace{0.1cm}nicht \hspace{0.1cm}0) \hspace{0.15cm}\underline {= 40 \hspace{0.1cm}Euro}.$$
+
\rm 11\hspace{0.1cm}(between \hspace{0.1cm}22\hspace{0.1cm} and \hspace{0.1cm}24) - 1 \hspace{0.1cm}(not \hspace{0.1cm}0) \hspace{0.15cm}\underline {= 40 \hspace{0.1cm}Euro}.$$
*Kommt dagegen die Null, so gewinnt er lediglich&nbsp; $\rm 35 - 31 = 4 \ Euro$.
+
*If, on the other hand, the zero comes, he wins only&nbsp; $\rm 35 - 31 = 4 \ Euro$.
  
  
  
'''(5)'''&nbsp; <u>Nein, leider nicht.&nbsp; Im statistischen Mittel gewinnt immer die Bank</u>.
+
'''(5)'''&nbsp; <u>No, unfortunately not.  On statistical average, the house always wins.</u>.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 16:02, 25 November 2021

Considered betting situation

In roulette, a winning number  $Z$  is determined in each game by means of a ball and a roulette wheel, where we want to assume that all possible numbers  $Z \in \{0, 1, 2, \ \text{...} \ , 36 \}$  are equally probable.

The players can now bet on a single number or on a group of numbers with chips of different value.  Some of the possibilities and the corresponding winnings will be briefly explained here on the basis of the chips bet by a player (see graph):

  • If a player bets on a number (in the example on "0"), he would get back  $35$ times his stake as winnings.
  • If a player bets on a group of numbers with three fields (in the example, the 1-euro chip for the numbers from "22" to "24"), he would receive  $ 11$ times his stake as winnings in addition to his bet.
  • If a player bets on a group of numbers with  $ 18$  fields (for example, the 10-euro chips on "Rouge", on "Impair" and on "Passe"), he will receive the same amount back as winnings in addition to his bet.
  • If the number drawn does not belong to one of the squares he occupies, his bet is lost.





Hints:

  • Enter any losses as negative winnings in the following questions.
  • The topic of this chapter is illustrated with examples in the (German language) learning video Mengentheoretische Begriffe und Gesetzmäßigkeiten $\Rightarrow$ Set Theoretical Concepts and Laws.


Questions

1

A player simultaneously places one 1-euro chip on each of the squares „0“, „Red“ und „Black“.  What are his average winnings per game?

$G_1 \ =\ $

$\ \rm Euro$

2

How much does he win on average per game if he always places one  $1$  Euro chip on each of the squares "Red" and "Black"?

$G_2 \ =\ $

$\ \rm Euro$

3

How much does he win on average per game if he always bets  $1$  on "0" and  $10$  Euro auf on "Red"?

$G_3 \ =\ $

$\ \rm Euro$

4

The player bets as shown in the picture.   Which number  $Z_{\rm Wunsch}$  (Wunsch being German for wish/desire) should he be hoping for?  How big would his winnings be then?

$Z_{\rm Wunsch} \ = \ $

$G_4 \ =\ $

$\ \rm Euro$

5

Is there a betting combination such that the average winnings are positive?

Yes   ⇒   Quit university and go to the next casino.
No   ⇒   Continue with $\rm LNTwww$.


Solution

(1)  The player loses one euro each time one of the numbers  $1$  to  $36$  is drawn.

  • He wins  $33$  euro, if  $0$  is drawn. It follows that:
$$G_1 =\rm {36}/{37}\cdot (-1\hspace{0.1cm} Euro) + {1}/{37}\cdot (33\hspace{0.1cm} Euro) \hspace{0.15cm}\underline {= - 0.081\hspace{0.1cm} Euro\hspace{0.1cm}(Loss)}.$$


(2)  The player wins and loses nothing unless the zero is drawn.  If the zero appears, he loses his bet:

$$G_2 = \rm {1}/{37}\cdot (-2\hspace{0.1cm} Euro)\hspace{0.15cm}\underline { = -0.054 \hspace{0.1cm}Euro \hspace{0.1cm}(Loss)}.$$


(3)  If "red" is drawn, he wins nine euro.

  • If zero comes, he effectively wins  $25$  euro.
  • If "black" is drawn, he loses his entire bet of  $11$  euro:
$$G_3 = \rm {18}/{37}\cdot (10 -1) + {1}/{37}\cdot (35-10) + {18}/{37}\cdot (-10-1)\hspace{0.15cm}\underline { = - 0.297\hspace{0.1cm}Euro}.$$


(4)  He gets the highest winning at  $Z_{\rm Wunsch} \; \underline{ = 23} $.  Then four of his five chips win:

$$G_4 = \rm 10\hspace{0.1cm}(Red) + 10\hspace{0.1cm}(Passe) + 10\hspace{0.1cm}(Impair) + \rm 11\hspace{0.1cm}(between \hspace{0.1cm}22\hspace{0.1cm} and \hspace{0.1cm}24) - 1 \hspace{0.1cm}(not \hspace{0.1cm}0) \hspace{0.15cm}\underline {= 40 \hspace{0.1cm}Euro}.$$
  • If, on the other hand, the zero comes, he wins only  $\rm 35 - 31 = 4 \ Euro$.


(5)  No, unfortunately not. On statistical average, the house always wins..