Difference between revisions of "Aufgaben:Exercise 1.4Z: Modified MS43 Code"

From LNTwww
 
(3 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID1583__Bei_Z_1_4.png|right|frame|Code table of the MMS43 code]]
+
[[File:EN_Bei_Z_1_4.png|right|frame|Code table of the MMS43 code]]
For ISDN data transmission, the MMS43 code is used in Germany and Belgium on the so-called  $\rm U_{\rm K0}$ interface  (transmission path between the exchange and the NTBA).   
+
For ISDN data transmission,  the MMS43 code is used in Germany and Belgium on the so-called  "$\rm U_{\rm K0}$"  interface  $($transmission path between the exchange and the NTBA$)$.   
  
The abbreviation "MMS43" stands for '''M'''odified '''M'''onitored '''S'''um '''4'''B'''3'''T.
+
The abbreviation  "MMS43"  stands for  "'''M'''odified '''M'''onitored '''S'''um '''4'''B'''3'''T".
  
This is a 4B3T block code with the four code tables shown in the graphic, which are used for coding according to the so-called "running digital sum" (after  $l$  blocks)
+
This is a 4B3T block code with the four code tables shown in the graphic,  which are used for coding according to the so-called "running digital sum"  $($after  $l$  blocks$)$:
 
:$${\it \Sigma}\hspace{0.05cm}_l = \sum_{\nu = 1}^{3 \hspace{0.05cm}\cdot \hspace{0.05cm} l}\hspace{0.02cm} a_\nu$$
 
:$${\it \Sigma}\hspace{0.05cm}_l = \sum_{\nu = 1}^{3 \hspace{0.05cm}\cdot \hspace{0.05cm} l}\hspace{0.02cm} a_\nu$$
For initialization wird  ${\it \Sigma}_{0} = 0$  is used.
+
For initialization:  ${\it \Sigma}_{0} = 0$  is used.
  
  
 
The colorings in the graph mean:
 
The colorings in the graph mean:
*If the running digital sum does not change  $({\it \Sigma}\hspace{0.05cm}_{l+1} = {\it \Sigma}\hspace{0.05cm} _{l})$, a field is grayed out.
+
*If the running digital sum does not change   $({\it \Sigma}\hspace{0.05cm}_{l+1} = {\it \Sigma}\hspace{0.05cm} _{l})$,  a field is grayed out.
*An increase&nbsp; $({\it \Sigma}\hspace{0.05cm}_{l+1} > {\it \Sigma}\hspace{0.05cm}_{l})$&nbsp; is highlighted in red, a decrease&nbsp; $({\it \Sigma}\hspace{0.05cm}_{l+1} < {\it \Sigma}\hspace{0.05cm} _{l})$&nbsp; in blue.
 
*The more intense these colors are, the greater the change in the running digital sum.
 
  
 +
*An increase &nbsp; $({\it \Sigma}\hspace{0.05cm}_{l+1} > {\it \Sigma}\hspace{0.05cm}_{l})$ &nbsp; is highlighted in red,&nbsp; a decrease &nbsp; $({\it \Sigma}\hspace{0.05cm}_{l+1} < {\it \Sigma}\hspace{0.05cm} _{l})$ &nbsp; in blue.
  
 +
*The more intense these colors are,&nbsp; the greater the change in the running digital sum.
  
  
Line 24: Line 24:
  
  
 +
Notes:
  
 
+
*The exercise belongs to the chapter&nbsp; [[Examples_of_Communication_Systems/ISDN_Basic_Access|"ISDN Basic Access"]].
''Notes:''
+
 
+
*Information about the MMS43 code can be found in the chapter&nbsp;  [[Digital_Signal_Transmission/Block_Coding_with_4B3T_Codes|"Block Coding with 4B3T Codes"]]&nbsp; of the book&nbsp; "Digital signal transmission".
*The exercise belongs to the chapter&nbsp; [[Examples_of_Communication_Systems/ISDN_Basic_Access|"ISDN Basic Access"]].  
 
*Information about the MMS43 code can be found in the chapter&nbsp;  [[Digital_Signal_Transmission/Block_Coding_with_4B3T_Codes|"Block Coding with 4B3T Codes"]]&nbsp; of the book "Digital signal transmission".
 
 
   
 
   
  
Line 37: Line 36:
  
 
<quiz display=simple>
 
<quiz display=simple>
{What are the reasons for using a 4B3T code instead of the redundancy-free binary code in ISDN?
+
{What are the reasons for using the 4B3T code instead of the redundancy-free binary code in ISDN?
 
|type="[]"}
 
|type="[]"}
 
- 4B3T is in principle better than the redundancy-free binary code.
 
- 4B3T is in principle better than the redundancy-free binary code.
+ The transmitted signal should be free of equal signals if the channel frequency response&nbsp; $H_{\rm K}(f = 0) = 0$.&nbsp;  
+
+ The transmitted signal should be free of DC signals if the channel frequency response&nbsp; $H_{\rm K}(f = 0) = 0$.&nbsp;  
 
+ A small symbol rate&nbsp; $(1/T)$&nbsp; allows a longer cable length.
 
+ A small symbol rate&nbsp; $(1/T)$&nbsp; allows a longer cable length.
  
{Code the binary sequence&nbsp; $1100\hspace{0.08cm} 0100 \hspace{0.08cm} 0110 \hspace{0.08cm} 1010$&nbsp; according to the table. <br>What is the coefficient of the third ternary symbol of the fourth block?
+
{Encode the binary sequence&nbsp; "$1100\hspace{0.08cm} 0100 \hspace{0.08cm} 0110 \hspace{0.08cm} 1010$"&nbsp; according to the table. <br>What is the coefficient of the third ternary symbol of the fourth block?
 
|type="{}"}
 
|type="{}"}
 
$a_{12} \ = \ $ { -1.03--0.97 }
 
$a_{12} \ = \ $ { -1.03--0.97 }
  
{Determine the Markov diagram for the transition from ${\it \Sigma}\hspace{0.05cm}_{l}$ to ${\it \Sigma}\hspace{0.05cm}_{l+1}$. What are the transition probabilities?
+
{Determine the Markov diagram for the transition from&nbsp; ${\it \Sigma}\hspace{0.05cm}_{l}$&nbsp; to&nbsp; ${\it \Sigma}\hspace{0.05cm}_{l+1}$.&nbsp; What are the transition probabilities?
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l+1} = 0 \ | \ {\it \Sigma}\hspace{0.05cm}_{l}=0) \ = \ $ { 0.375 3% }
 
${\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l+1} = 0 \ | \ {\it \Sigma}\hspace{0.05cm}_{l}=0) \ = \ $ { 0.375 3% }
Line 55: Line 54:
 
{What properties follow from the Markov diagram?
 
{What properties follow from the Markov diagram?
 
|type="[]"}
 
|type="[]"}
- The probabilities&nbsp; ${\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 0), \text{ ...} \  , {\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 3)$&nbsp; are equal.
+
- The probabilities &nbsp; ${\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 0), \text{ ...} \  , {\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 3)$ &nbsp; are equal.
+ &nbsp; ${\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 0) = {\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 3)$&nbsp; and&nbsp; ${\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 1) = {\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 2)$ are valid.
+
+ ${\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 0) = {\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 3)$ &nbsp; and &nbsp; ${\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 1) = {\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 2)$&nbsp;  are valid.
 
+ The extreme values&nbsp; $(0$ or $3)$&nbsp; occur less frequently than&nbsp; $1$&nbsp; or&nbsp; $2$.
 
+ The extreme values&nbsp; $(0$ or $3)$&nbsp; occur less frequently than&nbsp; $1$&nbsp; or&nbsp; $2$.
  
Line 64: Line 63:
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
'''(1)'''&nbsp; <u>Statements 2 and 3</u> are correct:
+
'''(1)'''&nbsp; <u>Statements 2 and 3</u>&nbsp; are correct:
*The first statement is not true: For example, the AWGN channel (additive white Gaussian noise) with a 4B3T code results in a much larger error probability due to the ternary decision compared to the redundancy-free binary code.
+
*The first statement is not true:&nbsp; For example,&nbsp; the AWGN channel&nbsp; ("additive white Gaussian noise") with a 4B3T code results in a much larger error probability due to the ternary decision compared to the redundancy-free binary code.
*The essential reason for the use of a redundant transmission code is rather that no DC signal component can be transmitted via a "telephone channel".
 
*The $25 \%$ smaller step rate $(1/T)$ of the 4B3T code also accommodates the transmission characteristics of copper lines (strong increase in attenuation with frequency).
 
*For a given line attenuation, therefore, a greater length can be bridged with the 4B3T code than with a redundancy-free binary signal.  
 
  
 +
*The essential reason for the use of a redundant transmission code is rather that no DC signal component can be transmitted via a&nbsp; "telephone channel".
  
 +
*The&nbsp; $25 \%$&nbsp; smaller symbol rate&nbsp; $(1/T)$&nbsp; of the 4B3T code also accommodates the transmission characteristics of copper lines&nbsp; (strong increase in attenuation with frequency).
  
'''(2)'''&nbsp; With the initial value ${\it \Sigma}_{0} = 0$, the 4B3T coding results in:
+
*For a given line attenuation,&nbsp; therefore,&nbsp; a greater length can be bridged with the 4B3T code than with a redundancy-free binary signal.
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; With the initial value&nbsp; ${\it \Sigma}_{0} = 0$,&nbsp; the 4B3T coding results in:
  
 
* '''1100''' &nbsp; &rArr; &nbsp; "+  +  +" &nbsp; &rArr; &nbsp; ${\it \Sigma}_{1} = 3$,
 
* '''1100''' &nbsp; &rArr; &nbsp; "+  +  +" &nbsp; &rArr; &nbsp; ${\it \Sigma}_{1} = 3$,
Line 83: Line 85:
  
  
Thus, the amplitude coefficient we are looking for is $a_{12}\hspace{0.15cm} \underline{ = \ –1}$.
+
Thus,&nbsp; the amplitude coefficient we are looking for is&nbsp; $a_{12}\hspace{0.15cm} \underline{ = \ –1}$.
  
  
  
 
[[File:P_ID1341_Dig_A_2_6c.png|right|frame|Markov diagram for the MMS43 code]]
 
[[File:P_ID1341_Dig_A_2_6c.png|right|frame|Markov diagram for the MMS43 code]]
'''(3)'''&nbsp; From the coloring of the given code table, one can determine the following Markov diagram.
+
'''(3)'''&nbsp; From the coloring of the given code table,&nbsp; one can determine the following Markov diagram.
*From it, the transition probabilities we are looking for can be read:
+
*From it,&nbsp; the transition probabilities we are looking for can be read:
  
 
:$${\rm Pr}({\it \Sigma}_{l+1} = 0 \ | \ {\it \Sigma}_{l}=0) \ = \ 6/16 \underline{ \ = \ 0.375},$$  
 
:$${\rm Pr}({\it \Sigma}_{l+1} = 0 \ | \ {\it \Sigma}_{l}=0) \ = \ 6/16 \underline{ \ = \ 0.375},$$  
Line 97: Line 99:
  
  
'''(4)'''&nbsp; <u>Statements 2 and 3</u> are correct:
+
'''(4)'''&nbsp; <u>Statements 2 and 3</u>&nbsp; are correct:
*The first statement is false, which can be seen from the asymmetries in the Markov diagram.
+
*The first statement is false,&nbsp; which can be seen from the asymmetries in the Markov diagram.
*On the other hand, there are symmetries with respect to the states "0" and "3" and between "1" and "2".
+
 
 +
*On the other hand,&nbsp; there are symmetries with respect to the states&nbsp; "0"&nbsp; and&nbsp; "3"&nbsp; and between&nbsp; "1"&nbsp; and&nbsp; "2".
  
  
In the following calculation, instead of ${\rm Pr}({\it \Sigma}_{l} = 0)$, we write ${\rm Pr}(0)$ in a simplified way. Taking advantage of the property ${\rm Pr}(3) = {\rm Pr}(0)$ and ${\rm Pr}(2) = {\rm Pr}(1)$, we get the following equations from the Markov diagram:
+
In the following calculation,&nbsp; instead of&nbsp; ${\rm Pr}({\it \Sigma}_{l} = 0)$,&nbsp; we write&nbsp; ${\rm Pr}(0)$&nbsp; in a simplified way.
 +
* Taking advantage of the properties&nbsp; ${\rm Pr}(3) = {\rm Pr}(0)$&nbsp; and&nbsp; ${\rm Pr}(2) = {\rm Pr}(1)$,&nbsp; we get the following equations from the Markov diagram:
 
:$${\rm Pr}(0)= \frac{6}{16} \cdot {\rm Pr}(0) + \frac{4}{16} \cdot {\rm Pr}(1)+ \frac{1}{16} \cdot {\rm Pr}(3)\hspace{0.3cm} \Rightarrow \hspace{0.3cm}\frac{9}{16} \cdot {\rm Pr}(0)= \frac{4}{16} \cdot {\rm Pr}(1).$$
 
:$${\rm Pr}(0)= \frac{6}{16} \cdot {\rm Pr}(0) + \frac{4}{16} \cdot {\rm Pr}(1)+ \frac{1}{16} \cdot {\rm Pr}(3)\hspace{0.3cm} \Rightarrow \hspace{0.3cm}\frac{9}{16} \cdot {\rm Pr}(0)= \frac{4}{16} \cdot {\rm Pr}(1).$$
From the further condition ${\rm Pr}(0) + {\rm Pr}(1) = 1/2$ t follows further:
+
*From the further condition&nbsp; ${\rm Pr}(0) + {\rm Pr}(1) = 1/2$&nbsp; follows further:
 
:$${\rm Pr}(0)= {\rm Pr}(3)= \frac{9}{26}\hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(1)= {\rm Pr}(2)= \frac{4}{26}\hspace{0.05cm}.$$
 
:$${\rm Pr}(0)= {\rm Pr}(3)= \frac{9}{26}\hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(1)= {\rm Pr}(2)= \frac{4}{26}\hspace{0.05cm}.$$
This calculation is based on the <u>sum of the incoming arrows in the "0" condition</u>.  
+
:This calculation is based on the&nbsp; <u>sum of the incoming arrows in the "0" condition</u>.  
  
One could also give equations for the other three states, but they all give the same result:
+
*One could also give equations for the other three states,&nbsp; but they all give the same result:
 
:$${\rm Pr}(1) \ = \ \frac{6}{16} \cdot {\rm Pr}(0) + \frac{6}{16} \cdot {\rm Pr}(1)+ \frac{6}{16} \cdot {\rm Pr}(2)+\frac{3}{16} \cdot {\rm Pr}(3)\hspace{0.05cm},$$
 
:$${\rm Pr}(1) \ = \ \frac{6}{16} \cdot {\rm Pr}(0) + \frac{6}{16} \cdot {\rm Pr}(1)+ \frac{6}{16} \cdot {\rm Pr}(2)+\frac{3}{16} \cdot {\rm Pr}(3)\hspace{0.05cm},$$
 
:$$ {\rm Pr}(2) \ = \ \frac{3}{16} \cdot {\rm Pr}(0) + \frac{6}{16} \cdot {\rm Pr}(1)+ \frac{6}{16} \cdot {\rm Pr}(2)+\frac{6}{16} \cdot {\rm Pr}(3)\hspace{0.05cm},$$
 
:$$ {\rm Pr}(2) \ = \ \frac{3}{16} \cdot {\rm Pr}(0) + \frac{6}{16} \cdot {\rm Pr}(1)+ \frac{6}{16} \cdot {\rm Pr}(2)+\frac{6}{16} \cdot {\rm Pr}(3)\hspace{0.05cm},$$

Latest revision as of 17:55, 24 October 2022

Code table of the MMS43 code

For ISDN data transmission,  the MMS43 code is used in Germany and Belgium on the so-called  "$\rm U_{\rm K0}$"  interface  $($transmission path between the exchange and the NTBA$)$. 

The abbreviation  "MMS43"  stands for  "Modified Monitored Sum 4B3T".

This is a 4B3T block code with the four code tables shown in the graphic,  which are used for coding according to the so-called "running digital sum"  $($after  $l$  blocks$)$:

$${\it \Sigma}\hspace{0.05cm}_l = \sum_{\nu = 1}^{3 \hspace{0.05cm}\cdot \hspace{0.05cm} l}\hspace{0.02cm} a_\nu$$

For initialization:  ${\it \Sigma}_{0} = 0$  is used.


The colorings in the graph mean:

  • If the running digital sum does not change   $({\it \Sigma}\hspace{0.05cm}_{l+1} = {\it \Sigma}\hspace{0.05cm} _{l})$,  a field is grayed out.
  • An increase   $({\it \Sigma}\hspace{0.05cm}_{l+1} > {\it \Sigma}\hspace{0.05cm}_{l})$   is highlighted in red,  a decrease   $({\it \Sigma}\hspace{0.05cm}_{l+1} < {\it \Sigma}\hspace{0.05cm} _{l})$   in blue.
  • The more intense these colors are,  the greater the change in the running digital sum.



Notes:



Questions

1

What are the reasons for using the 4B3T code instead of the redundancy-free binary code in ISDN?

4B3T is in principle better than the redundancy-free binary code.
The transmitted signal should be free of DC signals if the channel frequency response  $H_{\rm K}(f = 0) = 0$. 
A small symbol rate  $(1/T)$  allows a longer cable length.

2

Encode the binary sequence  "$1100\hspace{0.08cm} 0100 \hspace{0.08cm} 0110 \hspace{0.08cm} 1010$"  according to the table.
What is the coefficient of the third ternary symbol of the fourth block?

$a_{12} \ = \ $

3

Determine the Markov diagram for the transition from  ${\it \Sigma}\hspace{0.05cm}_{l}$  to  ${\it \Sigma}\hspace{0.05cm}_{l+1}$.  What are the transition probabilities?

${\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l+1} = 0 \ | \ {\it \Sigma}\hspace{0.05cm}_{l}=0) \ = \ $

${\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l+1} = 2 \ | \ {\it \Sigma}\hspace{0.05cm}_{l}=0) \ = \ $

${\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l+1} = 0 \ | \ {\it \Sigma}\hspace{0.05cm}_{l}=2) \ = \ $

4

What properties follow from the Markov diagram?

The probabilities   ${\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 0), \text{ ...} \ , {\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 3)$   are equal.
${\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 0) = {\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 3)$   and   ${\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 1) = {\rm Pr}({\it \Sigma}\hspace{0.05cm}_{l} = 2)$  are valid.
The extreme values  $(0$ or $3)$  occur less frequently than  $1$  or  $2$.


Solution

(1)  Statements 2 and 3  are correct:

  • The first statement is not true:  For example,  the AWGN channel  ("additive white Gaussian noise") with a 4B3T code results in a much larger error probability due to the ternary decision compared to the redundancy-free binary code.
  • The essential reason for the use of a redundant transmission code is rather that no DC signal component can be transmitted via a  "telephone channel".
  • The  $25 \%$  smaller symbol rate  $(1/T)$  of the 4B3T code also accommodates the transmission characteristics of copper lines  (strong increase in attenuation with frequency).
  • For a given line attenuation,  therefore,  a greater length can be bridged with the 4B3T code than with a redundancy-free binary signal.


(2)  With the initial value  ${\it \Sigma}_{0} = 0$,  the 4B3T coding results in:

  • 1100   ⇒   "+ + +"   ⇒   ${\it \Sigma}_{1} = 3$,
  • 0100   ⇒   " – + 0"   ⇒   ${\it \Sigma}_{2} = 3$,
  • 0110   ⇒   "– – +"   ⇒   ${\it \Sigma}_{3} = 2$,
  • 1010   ⇒   "+ – –"   ⇒   ${\it \Sigma}_{4} = 1$.


Thus,  the amplitude coefficient we are looking for is  $a_{12}\hspace{0.15cm} \underline{ = \ –1}$.


Markov diagram for the MMS43 code

(3)  From the coloring of the given code table,  one can determine the following Markov diagram.

  • From it,  the transition probabilities we are looking for can be read:
$${\rm Pr}({\it \Sigma}_{l+1} = 0 \ | \ {\it \Sigma}_{l}=0) \ = \ 6/16 \underline{ \ = \ 0.375},$$
$${\rm Pr}({\it \Sigma}_{l+1} = 2 \ | \ {\it \Sigma}_{l}=0) \ = \ 3/16 \underline{ \ = \ 0.1875},$$
$${\rm Pr}({\it \Sigma}_{l+1} = 0 \ | \ {\it \Sigma}_{l}=2) \underline{ \ = \ 0}.$$


(4)  Statements 2 and 3  are correct:

  • The first statement is false,  which can be seen from the asymmetries in the Markov diagram.
  • On the other hand,  there are symmetries with respect to the states  "0"  and  "3"  and between  "1"  and  "2".


In the following calculation,  instead of  ${\rm Pr}({\it \Sigma}_{l} = 0)$,  we write  ${\rm Pr}(0)$  in a simplified way.

  • Taking advantage of the properties  ${\rm Pr}(3) = {\rm Pr}(0)$  and  ${\rm Pr}(2) = {\rm Pr}(1)$,  we get the following equations from the Markov diagram:
$${\rm Pr}(0)= \frac{6}{16} \cdot {\rm Pr}(0) + \frac{4}{16} \cdot {\rm Pr}(1)+ \frac{1}{16} \cdot {\rm Pr}(3)\hspace{0.3cm} \Rightarrow \hspace{0.3cm}\frac{9}{16} \cdot {\rm Pr}(0)= \frac{4}{16} \cdot {\rm Pr}(1).$$
  • From the further condition  ${\rm Pr}(0) + {\rm Pr}(1) = 1/2$  follows further:
$${\rm Pr}(0)= {\rm Pr}(3)= \frac{9}{26}\hspace{0.05cm}, \hspace{0.2cm} {\rm Pr}(1)= {\rm Pr}(2)= \frac{4}{26}\hspace{0.05cm}.$$
This calculation is based on the  sum of the incoming arrows in the "0" condition.
  • One could also give equations for the other three states,  but they all give the same result:
$${\rm Pr}(1) \ = \ \frac{6}{16} \cdot {\rm Pr}(0) + \frac{6}{16} \cdot {\rm Pr}(1)+ \frac{6}{16} \cdot {\rm Pr}(2)+\frac{3}{16} \cdot {\rm Pr}(3)\hspace{0.05cm},$$
$$ {\rm Pr}(2) \ = \ \frac{3}{16} \cdot {\rm Pr}(0) + \frac{6}{16} \cdot {\rm Pr}(1)+ \frac{6}{16} \cdot {\rm Pr}(2)+\frac{6}{16} \cdot {\rm Pr}(3)\hspace{0.05cm},$$
$$ {\rm Pr}(3) \ = \ \frac{1}{16} \cdot {\rm Pr}(0) + \frac{4}{16} \cdot {\rm Pr}(2)+\frac{6}{16} \cdot {\rm Pr}(3)\hspace{0.05cm}.$$