Difference between revisions of "Aufgaben:Exercise 1.4Z: On the Doppler Effect"

From LNTwww
Line 3: Line 3:
  
 
[[File:P_ID2118__Mob_Z_1_4.png|right|frame|Bewegungsrichtungen  $\rm (A)$, ...]]
 
[[File:P_ID2118__Mob_Z_1_4.png|right|frame|Bewegungsrichtungen  $\rm (A)$, ...]]
Als „Dopplereffekt” bezeichnet man die Veränderung der wahrgenommenen Frequenz von Wellen jeder Art, während sich Quelle (Sender) und Beobachter (Empfänger) relativ zueinander bewegen.
+
The Doppler effect is the change in the perceived frequency of waves of any kind as the source (transmitter) and observer (receiver) move relative to each other.
  
Wir gehen hier stets von einem festen Sender aus, während sich der Empfänger in vier verschiedene Richtungen  $\rm (A)$,  $\rm (B)$,  $\rm (C)$  und  $\rm (D)$  bewegen kann (siehe Grafik).
+
Here we always assume a fixed transmitter, while the receiver can move in four different directions  $\rm (A)$,  $\rm (B)$,  $\rm (C)$  and  $\rm (D)$  (see diagram).
  
Untersucht werden sollen verschiedene Geschwindigkeiten:
+
Different speeds are to be investigated:
* eine unrealistisch große Geschwindigkeit  $v_1 = 0.6 \cdot c = 1.8 \cdot 10^8 \ {\rm m/s}$,
+
* an unrealistically high speed  $v_1 = 0.6 \cdot c = 1.8 \cdot 10^8 \ {\rm m/s}$,
* die Maximalgeschwindigkeit  $v_2 = 3 \ {\rm km/s} \ (10800 \ {\rm km/h})$  bei unbemanntem Testflug,
+
* the maximum speed  $v_2 = 3 \ {\rm km/s} \ (10800 \ {\rm km/h})$  during unmanned test flight,
* etwa die Höchstgeschwindigkeit  $v_3 = 30 \ {\rm m/s} = 108 \ \rm km/h$  auf Bundesstraßen.
+
* approximately the maximum speed  $v_3 = 30 \ {\rm m/s} = 108 \ \ \rm km/h$  on federal roads.
  
  
Die im Theorieteil angegebenen Gleichungen für die Empfangsfrequenz lauten
+
The equations given in the theory section for the reception frequency are
* unter Berücksichtigung der Relativitätstheorie (kurz als „relativistisch” bezeichnet):
+
* taking into account the theory of relativity (briefly referred to as „relativistic”):
:$${\rm Gleichung \hspace{0.15cm}(1):}\hspace{0.2cm}f_{\rm E} = f_{\rm S} \cdot \frac{\sqrt{1 - (v/c)^2}}{1 - v/c \cdot \cos(\alpha)}  \hspace{0.05cm},$$
+
$${\rm equation \hspace{0.15cm}(1):}\hspace{0.2cm}f_{\rm E} = f_{\rm S} \cdot \frac{\sqrt{1 - (v/c)^2}}{1 - v/c \cdot \cos(\alpha)}  \hspace{0.05cm},$$
* ohne Berücksichtigung relativistischer Eigenschaften (kurz: „herkömmlich”):
+
* without consideration of relativistic properties (short: „conventional”):
:$${\rm Gleichung \hspace{0.15cm}(2):}\hspace{0.2cm}f_{\rm E} =   f_{\rm S} \cdot \big [ 1 + {v}/{c} \cdot \cos(\alpha) \big ] \hspace{0.05cm}.$$
+
$${\rm equation \hspace{0.15cm}(2):}\hspace{0.2cm}f_{\rm E} = f_{\rm S} \cdot \big [ 1 + {v}/{c} \cdot \cos(\alpha) \big ] \hspace{0.05cm}.$
  
  
Line 23: Line 23:
  
  
''Hinweise:''  
+
''Notes:''
* Die Aufgabe gehört zum Themengebiet  [[Mobile_Kommunikation/Statistische_Bindungen_innerhalb_des_Rayleigh%E2%80%93Prozesses|Statistische Bindungen innerhalb des Rayleigh–Prozesses]].  
+
* This task belongs to the subject area  [[Mobile_Kommunikation/Statistische_Bindungen_innerhalb_des_Rayleigh%E2%80%93Prozesses|Statistische Bindungen innerhalb des Rayleigh–Prozesses]].  
* $c = 3 \cdot 10^8 \ \rm m/s$  nennt man Lichtgeschwindigkeit.
+
* $c = 3 \cdot 10^8 \ \ \rm m/s$  is the speed of light.
* Zur Überprüfung Ihrer Ergebnisse können Sie das Interaktionsmodul  [[Applets:Zur_Verdeutlichung_des_Dopplereffekts_(Applet)|Zur Verdeutlichung des Dopplereffekts]] benutzen.
+
* To check your results you can use the interactive module  [[Applets:Zur_Verdeutlichung_des_Dopplereffekts_(Applet)|Zur Verdeutlichung des Dopplereffekts]].
 
   
 
   
  
  
  
===Fragebogen===
+
===Questionnaire===
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Dopplerfrequenzen ergeben sich für die Geschwindigkeiten&nbsp; $v_1$&nbsp; und&nbsp; $v_2$&nbsp; in Fahrtrichtung &nbsp;$\rm (A)$&nbsp; mit  <b>Gleichung (1)</b>?
+
{Which Doppler frequencies result for the speeds&nbsp; $v_1$&nbsp; and&nbsp; $v_2$&nbsp; in direction of travel &nbsp;$\rm (A)$&nbsp; with <b> equation (1)</b>?
 
|type="{}"}
 
|type="{}"}
$v_1\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S} \ = \ $ { 1 3% }  
+
$v_1\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S} \ = \ $ { 1 3% }  
$v_2\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S} \ = \ $ { 1 3% } $\cdot \ 10^{-5}$
+
$v_2\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S} \ = \ $ { 1 3% } $\cdot \ 10^{-5}$
  
{Welche Dopplerfrequenzen erhält man bei sonst gleichen Bedingungen für die entgegengesetzte Fahrtrichtung &nbsp;$\rm (B)$&nbsp; mit  <b>Gleichung (1)</b>.
+
{Which Doppler frequencies are obtained for the opposite direction of travel &nbsp;$\rm (B)$&nbsp; with <b>equation (1)</b>.
 
|type="{}"}
 
|type="{}"}
$v_1\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S} \ = \ $ { -0.515--0.485 }  
+
$v_1\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S} \ = \ $ { -0.515--0.485 }  
$v_1\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S} \ = \ $ { -1.03--0.97 } $\cdot \ 10^{-5}$
+
$v_1\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S} \ = \ $ { -1.03--0.97 } $\cdot \ 10^{-5}$
  
{Welche Dopplerfrequenzen erhält man bei ansonsten gleichen Bedingungen mit <b>Gleichung (2)</b>?
+
{Which Doppler frequencies are obtained under otherwise identical conditions with <b> equation (2)</b>?
 
|type="{}"}
 
|type="{}"}
${\rm Richtung \ (A)}, \ \ v_1\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S}\ = \ $ { 0.6 3% }  
+
${\rm direction \ (A)}, \ \ v_1\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S}\ = \ $ { 0.6 3% }  
$\hspace{2.96cm} v_2\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S}\ = \ $ { 1 3% } $\cdot \ 10^{\rm &ndash;5}$
+
$\hspace{2.96cm} v_2\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S}\ = \ $ { 1 3% } $\cdot \ 10^{\rm &ndash;5}$
${\rm Richtung \ (B)}, \ \ v_1\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S}\ = \ $ { -0.618--0.582 }  
+
${\rm direction \ (B)}, \ \ v_1\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S}\ = \ $ { -0.618--0.582 }  
$\hspace{2.96cm} v_2\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S}\ = \ $ { -1.03--0.97 } $\cdot \ 10^{\rm &ndash;5}$
+
$\hspace{2.96cm} v_2\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S}\ = \ $ { -1.03--0.97 } $\cdot \ 10^{\rm &ndash;5}$
  
{Es gelte $f_{\rm S} = 2 \ \rm GHz$. Welche Dopplerfrequenzen ergeben sich für die Fahrtrichtung &nbsp;$\rm (C)$&nbsp; und &nbsp;$\rm (D)$&nbsp; mit <b>Gleichung (2)</b>?
+
{Let $f_{\rm S} = 2 \rm GHz$. Which Doppler frequencies result for the direction of travel &nbsp;$\rm (C)$&nbsp; and &nbsp;$\rm (D)$&nbsp; with <b> equation (2)</b>?
 
|type="{}"}
 
|type="{}"}
${\rm Richtung \ (C)}, \ \ v_3\text{:} \hspace{0.4cm} f_{\rm D} \ = \ $ { 0. } $\ \rm Hz$
+
${\rm direction \ (C)}, \ \ v_3\text{:} \hspace{0.4cm} f_{\rm D} \ = \ $ { 0. } $\ \ \rm Hz$
${\rm Richtung \ (D)}, \ \ v_3\text{:} \hspace{0.4cm} f_{\rm D} \ = \ $ { -145.23--136.77 } $\ \rm Hz$
+
${\rm direction \ (D)}, \ \ v_3\text{:} \hspace{0.4cm} f_{\rm D} \ = \ $ { -145.23--136.77 } $\ \ \ \rm Hz$
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
=== sample solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Bei der Fahrtrichtung (A) nähert sich der Empfänger dem Sender unter dem Winkel $\alpha = 0$. Damit ergibt sich nach der relativistischen Gleichung (1):
+
'''(1)'''&nbsp; With the direction of travel (A), the receiver approaches the transmitter at an angle $\alpha = 0$. This gives (1) according to the relativistic equation:
:$$f_{\rm E} = f_{\rm S} \cdot \frac{\sqrt{1 - (v/c)^2}}{1 - v/c }   
+
$$f_{\rm E} = f_{\rm S} \cdot \frac{\sqrt{1 - (v/c)^2}}{1 - v/c }   
  \hspace{0.3cm} \Rightarrow \hspace{0.3cm} f_{\rm D} = f_{\rm E} - f_{\rm S} = f_{\rm S} \cdot \left [ \frac{\sqrt{1 - (v/c)^2}}{1 - v/c } - 1 \right ]\hspace{0.3cm}
+
  \hspace{0.3cm} \Rightarrow \hspace{0.3cm} f_{\rm D} = f_{\rm E} - f_{\rm S} = f_{\rm S} \cdot \left [ \frac{\sqrt{1 - (v/c)^2}}{1 - v/c } - 1 \right ]\hspace{0.3cm}
\Rightarrow \hspace{0.3cm}{f_{\rm D}}/{f_{\rm S}} =   \frac{\sqrt{1 - (v/c)^2}}{1 - v/c } - 1 \hspace{0.05cm}.$$
+
\Rightarrow \hspace{0.3cm}{f_{\rm D}}}/{f_{\rm S}} = \frac{\sqrt{1 - (v/c)^2}}{1 - v/c } - 1 \hspace{0.05cm}.$$
  
*Mit $\upsilon_1/c = 0.6$ erhält man:
+
*With $\upsilon_1/c = 0.6$ you get
:$${f_{\rm D}}/{f_{\rm S}} =   \frac{\sqrt{1 - 0.6^2}}{1 - 0.6 } - 1 = \frac{0.8}{0.4 } - 1 \hspace{0.15cm} \underline{ = 1}
+
$${f_{\rm D}}}/{f_{\rm S}}} = \frac{\sqrt{1 - 0.6^2}}}{1 - 0.6 } - 1 = \frac{0.8}{0.4 } - 1 \hspace{0.15cm} \underline{ = 1}
 
\hspace{0.3cm}\Rightarrow\hspace{0.3cm} {f_{\rm E}}/{f_{\rm S}} = 2
 
\hspace{0.3cm}\Rightarrow\hspace{0.3cm} {f_{\rm E}}/{f_{\rm S}} = 2
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
*Entsprechend gilt mit $\upsilon_2/c = 10^{\rm &ndash;5}$:
+
*Correspondingly with $\upsilon_2/c = 10^{\rm &ndash;5}$:
:$${f_{\rm D}}/{f_{\rm S}} =   \frac{\sqrt{1 - (10^{-5})^2}}{1 - (10^{-5}) } - 1 \approx 1 + 10^{-5} - 1 \hspace{0.15cm} \underline{ = 10^{-5}}
+
$${f_{\rm D}}}/{f_{\rm S}}} = \frac{\sqrt{1 - (10^{-5})^2}}}{1 - (10^{-5}) } - 1 \approx 1 + 10^{-5} - 1 \hspace{0.15cm} \underline{ = 10^{-5}}
 
\hspace{0.3cm}\Rightarrow\hspace{0.3cm} {f_{\rm E}}/{f_{\rm S}} = 1.00001
 
\hspace{0.3cm}\Rightarrow\hspace{0.3cm} {f_{\rm E}}/{f_{\rm S}} = 1.00001
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
  
 
+
'''(2)'''&nbsp; Now the receiver moves away from the transmitter ($\alpha = 180^°$).  
'''(2)'''&nbsp; Nun entfernt sich der Empfänger vom Sender ($\alpha = 180^°$).  
+
*The receive frequency $f_{\rm E}$ is lower than the transmit frequency $f_{\rm S}$ and the Doppler frequency $f_{\rm D}$ is negative. With ${\rm cos}(\alpha) = \ &ndash;1$ you now get
*Die Empfangsfrequenz $f_{\rm E}$ ist kleiner als die Sendefrequenz $f_{\rm S}$ und die Dopplerfrequenz $f_{\rm D}$ negativ. Mit ${\rm cos}(\alpha) = \ &ndash;1$ erhält man nun:
+
$${f_{\rm D}}/{f_{\rm S}} = \frac{\sqrt{1 - (v/c)^2}}}{1 + v/c } - 1 =
:$${f_{\rm D}}/{f_{\rm S}} =   \frac{\sqrt{1 - (v/c)^2}}{1 + v/c } - 1 =
+
\left\{ \begin{array}{c}  \hspace{0.15cm} \underline{ -0.5} \\ \\
\left\{ \begin{array}{c}  \hspace{0.15cm} \underline{ -0.5} \\ \\
+
\hspace{0.15cm} \underline{ -10^{-5}}  \end{array} \right.\quad
\hspace{0.15cm} \underline{ -10^{-5}}  \end{array} \right.\quad
+
\begin{array}{*{*{1}c} \hspace{-0.2cm}{\rm f\ddot{u}r}\hspace{0.15cm} v_1/c = 0.6
\begin{array}{*{1}c} \hspace{-0.2cm}{\rm f\ddot{u}r}\hspace{0.15cm} v_1/c = 0.6
+
\\ \\ {\rm f\ddot{u}r}\hspace{0.15cm} v_2/c = 10^{-5} \\ \end{array}
\\ \\ {\rm f\ddot{u}r}\hspace{0.15cm} v_2/c = 10^{-5} \\ \end{array}
 
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
*Umgerechnet auf $f_{\rm E}/f_{\rm S}$ ergibt sich:
+
*Converting to $f_{\rm E}/f_{\rm S}$ results in:
:$${f_{\rm E}}/{f_{\rm S}} =   
+
$${f_{\rm E}}/{f_{\rm S}} =   
\left\{ \begin{array}{c}  \hspace{0.15cm} { 0.5} \\ \\
+
\left\{ \begin{array}{c}  \hspace{0.15cm} { 0.5} \\ \\
\hspace{0.15cm} { 0.99999}  \end{array} \right.\quad
+
\hspace{0.15cm} {0.99999}  \end{array} \right.\quad
\begin{array}{*{1}c} \hspace{-0.2cm}{\rm f\ddot{u}r}\hspace{0.15cm} v_1/c = 0.6
+
\begin{array}{*{*{1}c} \hspace{-0.2cm}{\rm f\ddot{u}r}\hspace{0.15cm} v_1/c = 0.6
\\ \\ {\rm f\ddot{u}r}\hspace{0.15cm} v_2/c = 10^{-5} \\ \end{array}
+
\\ \\ {\rm f\ddot{u}r}\hspace{0.15cm} v_2/c = 10^{-5} \\ \end{array}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
  
  
'''(3)'''&nbsp; Hier gelten folgende Gleichungen:
+
'''(3)'''&nbsp; The following equations apply here:
:$$f_{\rm E} =   f_{\rm S} \cdot \left [ 1 + {v}/{c} \cdot \cos(\alpha) \right ]   
+
$$f_{\rm E} = f_{\rm S} \cdot \left [ 1 + {v}/{c} \cdot \cos(\alpha) \right ]   
  \Rightarrow \hspace{0.3cm}{f_{\rm D}}/{f_{\rm S}} = {v}/{c} \cdot \cos(\alpha) \hspace{0.05cm}.$$
+
  \Rightarrow \hspace{0.3cm}{f_{\rm D}}/{f_{\rm S}} = {v}/{c} \cdot \cos(\alpha) \hspace{0.05cm}.$
  
Daraus ergeben sich folgende Zahlenwerte:
+
This results in the following numerical values:
* Richtung (A), $v_1 /c = 1.8 \cdot 10^8 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ 0.6} \ \ \ &#8658; \ \ \ f_{\rm E}/f_{\rm S} = 1.6,$
+
* direction (A), $v_1 /c = 1.8 \cdot 10^8 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \ \underline {= \ 0.6} {\ \ \ &#8658; \ \ \ \ f_{\rm E}/f_{\rm S} = 1.6,$
* Richtung (A), $v_2 /c = 3.0 \cdot 10^3 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ 10^{\rm &ndash;5}} \ \ \ &#8658; \ \ \ f_{\rm E}/f_{\rm S} = 1.00001,$
+
* direction (A), $v_2 /c = 3.0 \cdot 10^3 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \ \underline {= \ 10^{\rm &ndash;5}}} \ \ \ &#8658; \ \ \ \ f_{\rm E}/f_{\rm S} = 1,00001.$
* Richtung (B), $v_1 /c = 1.8 \cdot 10^8 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ &ndash;0.6} \ \ \ &#8658; \ \ \ f_{\rm E}/f_{\rm S} = 0.4,$
+
* direction (B), $v_1 /c = 1.8 \cdot 10^8 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \ \underline {= \ &ndash;0.6} {\ \ \ &#8658; \ \ \ \ \ f_{\rm E}/f_{\rm S} = 0.4,$
* Richtung (B), $v_2 /c = 3.0 \cdot 10^3 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ &ndash;10^{\rm &ndash;5}} \ \ \ &#8658; \ \ \ f_{\rm E}/f_{\rm S} = 0.99999.$
+
* direction (B), $v_2 /c = 3.0 \cdot 10^3 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \ \underline {= \ &ndash;10^{\rm &ndash;5}} \ \ \ &#8658; \ \ \ \ \ f_{\rm E}/f_{\rm S} = 0.99999.$
  
  
Man erkennt:  
+
You can tell:  
*Für realistische Geschwindigkeiten &ndash; dazu rechnen wir auch $v \ \approx \ 10000 \ {\rm km/h}$ &ndash; liefert die herkömmliche Gleichung (2) bis hin zur Genauigkeit eines Taschenrechners das gleiche Ergebnis wie die relativistische Gleichung (1).  
+
*For realistic speeds &ndash; including $v \ \approx \ 10000 \ {\rm km/h}$ &ndash; the conventional equation (2) gives the same result as the relativistic equation (1) up to the accuracy of a pocket calculator.  
*Mit der Näherung liefern die Winkel $\alpha = 0^°$ und $\alpha = 180^\circ$ den gleichen Betrag der Dopplerfrequenz.  
+
*With the approximation, the angles $\alpha = 0^°$ and $\alpha = 180^\circ$ result in the same absolute value for the Doppler frequency.  
*Die Näherungen unterscheiden sich nur im Vorzeichen.  
+
*The approximations differ only in the sign.  
*Bei der relativistischen Gleichung ist diese Symmetrie nicht mehr gegeben. Siehe Teilaufgaben (1) und (2).
+
*In the relativistic equation this symmetry is no longer present. See subtasks (1) and (2).
  
  
  
'''(4)'''&nbsp; Gleichung (2) führt hier zum Ergebnis:
+
'''(4)'''&nbsp; Equation (2) leads here to the result:
:$$f_{\rm D} = f_{\rm E} - f_{\rm S} = f_{\rm S} \cdot {v_3}/{c} \cdot \cos(\alpha)  
+
$$f_{\rm D} = f_{\rm E} - f_{\rm S} = f_{\rm S} \cdot {v_3}/{c} \cdot \cos(\alpha)  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
* Die Fahrtrichtung (C) verläuft senkrecht ($\alpha = 90^\circ$) zur Verbindungslinie Sender&ndash;Empfänger. In diesem Fall tritt keine Dopplerverschiebung auf:  
+
* The direction of travel (C) is perpendicular ($\alpha = 90^\circ$) to the connection line transmitter&ndash;receiver. In this case, no Doppler shift occurs:  
:$$f_{\rm D} \ \underline {= \ 0}.$$  
+
:$$f_{\rm D} \ \ \underline {= \ 0}.$$  
* Die Bewegungsrichtung (D) ist durch $\alpha = \ &ndash;135^\circ$ charakterisiert. Daraus resultiert:
+
* The direction of movement (D) is characterized by $\alpha = \ &ndash;135^\circ$. As a result:
:$$f_{\rm D} = 2 \cdot 10^{9}\,\,{\rm Hz} \cdot \frac{30\,\,{\rm m/s}}{3 \cdot 10^{8}\,\,{\rm m/s}} \cdot \cos(-135^{\circ}) \hspace{0.15cm} \underline{ \approx -141\,\,{\rm Hz}}  \hspace{0.05cm}.$$
+
$$f_{\rm D} = 2 \cdot 10^{9}\,\,{\rm Hz} \cdot \frac{30\,\,{\rm m/s}}}{3 \cdot 10^{8}\,\,{\,} \cdot \cos(-135^{\circ}) \hspace{0.15cm} \underline{ \approx -141\,\,{\rm Hz}}  \hspace{0.05cm}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
 
[[Category:Exercises for Mobile Communications|^1.3 Rayleigh Fading with Memory^]]
 
[[Category:Exercises for Mobile Communications|^1.3 Rayleigh Fading with Memory^]]

Revision as of 10:43, 1 April 2020

Bewegungsrichtungen  $\rm (A)$, ...

The Doppler effect is the change in the perceived frequency of waves of any kind as the source (transmitter) and observer (receiver) move relative to each other.

Here we always assume a fixed transmitter, while the receiver can move in four different directions  $\rm (A)$,  $\rm (B)$,  $\rm (C)$  and  $\rm (D)$  (see diagram).

Different speeds are to be investigated:

  • an unrealistically high speed  $v_1 = 0.6 \cdot c = 1.8 \cdot 10^8 \ {\rm m/s}$,
  • the maximum speed  $v_2 = 3 \ {\rm km/s} \ (10800 \ {\rm km/h})$  during unmanned test flight,
  • approximately the maximum speed  $v_3 = 30 \ {\rm m/s} = 108 \ \ \rm km/h$  on federal roads.


The equations given in the theory section for the reception frequency are

  • taking into account the theory of relativity (briefly referred to as „relativistic”):

$${\rm equation \hspace{0.15cm}(1):}\hspace{0.2cm}f_{\rm E} = f_{\rm S} \cdot \frac{\sqrt{1 - (v/c)^2}}{1 - v/c \cdot \cos(\alpha)} \hspace{0.05cm},$$

  • without consideration of relativistic properties (short: „conventional”):

$${\rm equation \hspace{0.15cm}(2):}\hspace{0.2cm}f_{\rm E} = f_{\rm S} \cdot \big [ 1 + {v}/{c} \cdot \cos(\alpha) \big ] \hspace{0.05cm}.$ ''Notes:'' * This task belongs to the subject area  [[Mobile_Kommunikation/Statistische_Bindungen_innerhalb_des_Rayleigh%E2%80%93Prozesses|Statistische Bindungen innerhalb des Rayleigh–Prozesses]]. * $c = 3 \cdot 10^8 \ \ \rm m/s$  is the speed of light. * To check your results you can use the interactive module  [[Applets:Zur_Verdeutlichung_des_Dopplereffekts_(Applet)|Zur Verdeutlichung des Dopplereffekts]]. ==='"`UNIQ--h-0--QINU`"'Questionnaire=== '"`UNIQ--quiz-00000002-QINU`"' ==='"`UNIQ--h-1--QINU`"' sample solution=== '"`UNIQ--html-00000003-QINU`"' '''(1)'''  With the direction of travel (A), the receiver approaches the transmitter at an angle $\alpha = 0$. This gives (1) according to the relativistic equation: $$f_{\rm E} = f_{\rm S} \cdot \frac{\sqrt{1 - (v/c)^2}}{1 - v/c }

\hspace{0.3cm} \Rightarrow \hspace{0.3cm} f_{\rm D} = f_{\rm E} - f_{\rm S} = f_{\rm S} \cdot \left [ \frac{\sqrt{1 - (v/c)^2}}{1 - v/c } - 1 \right ]\hspace{0.3cm}

\Rightarrow \hspace{0.3cm}{f_{\rm D}}}/{f_{\rm S}} = \frac{\sqrt{1 - (v/c)^2}}{1 - v/c } - 1 \hspace{0.05cm}.$$ *With $\upsilon_1/c = 0.6$ you get $${f_{\rm D}}}/{f_{\rm S}}} = \frac{\sqrt{1 - 0.6^2}}}{1 - 0.6 } - 1 = \frac{0.8}{0.4 } - 1 \hspace{0.15cm} \underline{ = 1} \hspace{0.3cm}\Rightarrow\hspace{0.3cm} {f_{\rm E}}/{f_{\rm S}} = 2

\hspace{0.05cm}.$$

*Correspondingly with $\upsilon_2/c = 10^{\rm –5}$:
$${f_{\rm D}}}/{f_{\rm S}}} = \frac{\sqrt{1 - (10^{-5})^2}}}{1 - (10^{-5}) } - 1 \approx 1 + 10^{-5} - 1 \hspace{0.15cm} \underline{ = 10^{-5}}

\hspace{0.3cm}\Rightarrow\hspace{0.3cm} {f_{\rm E}}/{f_{\rm S}} = 1.00001

\hspace{0.05cm}.$$


'''(2)'''  Now the receiver moves away from the transmitter ($\alpha = 180^°$). 
*The receive frequency $f_{\rm E}$ is lower than the transmit frequency $f_{\rm S}$ and the Doppler frequency $f_{\rm D}$ is negative. With ${\rm cos}(\alpha) = \ –1$ you now get
$${f_{\rm D}}/{f_{\rm S}} = \frac{\sqrt{1 - (v/c)^2}}}{1 + v/c } - 1 =

\left\{ \begin{array}{c} \hspace{0.15cm} \underline{ -0.5} \\ \\ \hspace{0.15cm} \underline{ -10^{-5}} \end{array} \right.\quad \begin{array}{*{*{1}c} \hspace{-0.2cm}{\rm f\ddot{u}r}\hspace{0.15cm} v_1/c = 0.6 \\ \\ {\rm f\ddot{u}r}\hspace{0.15cm} v_2/c = 10^{-5} \\ \end{array} \hspace{0.05cm}.$$ *Converting to $f_{\rm E}/f_{\rm S}$ results in: $${f_{\rm E}}/{f_{\rm S}} = \left\{ \begin{array}{c} \hspace{0.15cm} { 0.5} \\ \\ \hspace{0.15cm} {0.99999} \end{array} \right.\quad \begin{array}{*{*{1}c} \hspace{-0.2cm}{\rm f\ddot{u}r}\hspace{0.15cm} v_1/c = 0.6 \\ \\ {\rm f\ddot{u}r}\hspace{0.15cm} v_2/c = 10^{-5} \\ \end{array} \hspace{0.05cm}.$$ '''(3)'''  The following equations apply here: $$f_{\rm E} = f_{\rm S} \cdot \left [ 1 + {v}/{c} \cdot \cos(\alpha) \right ]

\Rightarrow \hspace{0.3cm}{f_{\rm D}}/{f_{\rm S}} = {v}/{c} \cdot \cos(\alpha) \hspace{0.05cm}.$

This results in the following numerical values:
* direction (A), $v_1 /c = 1.8 \cdot 10^8 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \ \underline {= \ 0.6} {\ \ \ ⇒ \ \ \ \ f_{\rm E}/f_{\rm S} = 1.6,$
* direction (A), $v_2 /c = 3.0 \cdot 10^3 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \ \underline {= \ 10^{\rm –5}}} \ \ \ ⇒ \ \ \ \ f_{\rm E}/f_{\rm S} = 1,00001.$
* direction (B), $v_1 /c = 1.8 \cdot 10^8 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \ \underline {= \ –0.6} {\ \ \ ⇒ \ \ \ \ \ f_{\rm E}/f_{\rm S} = 0.4,$
* direction (B), $v_2 /c = 3.0 \cdot 10^3 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \ \underline {= \ –10^{\rm –5}} \ \ \ ⇒ \ \ \ \ \ f_{\rm E}/f_{\rm S} = 0.99999.$


You can tell: 
*For realistic speeds – including $v \ \approx \ 10000 \ {\rm km/h}$ – the conventional equation (2) gives the same result as the relativistic equation (1) up to the accuracy of a pocket calculator. 
*With the approximation, the angles $\alpha = 0^°$ and $\alpha = 180^\circ$ result in the same absolute value for the Doppler frequency. 
*The approximations differ only in the sign. 
*In the relativistic equation this symmetry is no longer present. See subtasks (1) and (2).



'''(4)'''  Equation (2) leads here to the result:
'"`UNIQ-MathJax31-QINU`"'

* The direction of travel (C) is perpendicular ($\alpha = 90^\circ$) to the connection line transmitter–receiver. In this case, no Doppler shift occurs: 
:'"`UNIQ-MathJax32-QINU`"' 
* The direction of movement (D) is characterized by $\alpha = \ –135^\circ$. As a result:

$$f_{\rm D} = 2 \cdot 10^{9}\,\,{\rm Hz} \cdot \frac{30\,\,{\rm m/s}}}{3 \cdot 10^{8}\,\,{\,} \cdot \cos(-135^{\circ}) \hspace{0.15cm} \underline{ \approx -141\,\,{\rm Hz}} \hspace{0.05cm}.$$