Difference between revisions of "Aufgaben:Exercise 1.4Z: On the Doppler Effect"

From LNTwww
m (Text replacement - "”" to """)
 
(9 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
   
 
   
{{quiz-Header|Buchseite=Mobile Kommunikation/Statistische Bindungen innerhalb des Rayleigh-Prozesses}}
+
{{quiz-Header|Buchseite=Mobile_Communications/Statistical_Bindings_within_the_Rayleigh_Process}}
  
 
[[File:P_ID2118__Mob_Z_1_4.png|right|frame|Directions of movement  $\rm (A)$, ...]]
 
[[File:P_ID2118__Mob_Z_1_4.png|right|frame|Directions of movement  $\rm (A)$, ...]]
Line 13: Line 13:
  
  
The equations given in the theory section for the reception frequency are
+
The equations given in the theoretical section for the reception frequency are
* taking into account the theory of relativity (briefly referred to as „relativistic”):
+
* taking into account the theory of relativity (briefly referred to as "relativistic"):
$${\rm equation \hspace{0.15cm}(1):}\hspace{0.2cm}f_{\rm E} = f_{\rm S} \cdot \frac{\sqrt{1 - (v/c)^2}}{1 - v/c \cdot \cos(\alpha)}  \hspace{0.05cm},$$
+
:$${\rm equation \hspace{0.15cm}(1):}\hspace{0.2cm}f_{\rm E} = f_{\rm S} \cdot \frac{\sqrt{1 - (v/c)^2}}{1 - v/c \cdot \cos(\alpha)}  \hspace{0.05cm},$$
* without consideration of relativistic properties (referred to as „conventional”):
+
* without consideration of relativistic properties (referred to as "conventional"):
$${\rm equation \hspace{0.15cm}(2):}\hspace{0.2cm}f_{\rm E} = f_{\rm S} \cdot \big [ 1 + {v}/{c} \cdot \cos(\alpha) \big ] \hspace{0.05cm}.$$
+
:$${\rm equation \hspace{0.15cm}(2):}\hspace{0.2cm}f_{\rm E} = f_{\rm S} \cdot \big [ 1 + {v}/{c} \cdot \cos(\alpha) \big ] \hspace{0.05cm}.$$
  
  
Line 24: Line 24:
  
 
''Notes:''
 
''Notes:''
* This task belongs to the subject area  [[Mobile_Communications/Statistische_Bindungen_innerhalb_des_Rayleigh%E2%80%93Prozesses|Statistische Bindungen innerhalb des Rayleigh–Prozesses]].  
+
* This task belongs to the topic of  [[Mobile_Communications/Statistical_Bindings_within_the_Rayleigh_Process|Statistical bindings within the Rayleigh process]].  
 
* $c = 3 \cdot 10^8 \ \ \rm m/s$  is the speed of light.
 
* $c = 3 \cdot 10^8 \ \ \rm m/s$  is the speed of light.
* To check your results you can use the interactive module  [[Applets:Zur_Verdeutlichung_des_Dopplereffekts_(Applet)|Zur Verdeutlichung des Dopplereffekts]].
+
* To check your results you can use the applet  [[Applets:The_Doppler_Effect|The Doppler Effect]].
 +
 
 
   
 
   
  
Line 33: Line 34:
 
===Questions===
 
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Which Doppler frequencies result for the speeds&nbsp; $v_1$&nbsp; and&nbsp; $v_2$&nbsp; in direction of travel &nbsp;$\rm (A)$&nbsp; with <b> equation (1)</b>?
+
{Which Doppler frequencies result for the speeds&nbsp; $v_1$&nbsp; and&nbsp; $v_2$&nbsp; in driving direction &nbsp;$\rm (A)$&nbsp; with <b> equation (1)</b>?
 
|type="{}"}
 
|type="{}"}
 
$v_1\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S} \ = \ $ { 1 3% }  
 
$v_1\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S} \ = \ $ { 1 3% }  
 
$v_2\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S} \ = \ $ { 1 3% } $\cdot \ 10^{-5}$
 
$v_2\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S} \ = \ $ { 1 3% } $\cdot \ 10^{-5}$
  
{Which Doppler frequencies are obtained for the opposite direction of travel &nbsp;$\rm (B)$&nbsp; with <b>equation (1)</b>.
+
{Which Doppler frequencies are obtained for the opposite driving direction &nbsp;$\rm (B)$&nbsp; with <b>equation (1)</b>.
 
|type="{}"}
 
|type="{}"}
 
$v_1\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S} \ = \ $ { -0.515--0.485 }  
 
$v_1\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S} \ = \ $ { -0.515--0.485 }  
Line 50: Line 51:
 
$\hspace{2.96cm} v_2\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S}\ = \ $ { -1.03--0.97 } $\cdot \ 10^{\rm &ndash;5}$
 
$\hspace{2.96cm} v_2\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S}\ = \ $ { -1.03--0.97 } $\cdot \ 10^{\rm &ndash;5}$
  
{Let $f_{\rm S} = 2 \rm GHz$. Which Doppler frequencies result for the direction of travel &nbsp;$\rm (C)$&nbsp; and &nbsp;$\rm (D)$&nbsp; with <b> equation (2)</b>?
+
{Let $f_{\rm S} = 2 \ \rm GHz$.&nbsp; Which Doppler frequencies result for the driving direction &nbsp;$\rm (C)$&nbsp; and &nbsp;$\rm (D)$&nbsp; with&nbsp; <b> equation (2)</b>?
 
|type="{}"}
 
|type="{}"}
 
${\rm direction \ (C)}, \ \ v_3\text{:} \hspace{0.4cm} f_{\rm D} \ = \ $ { 0. } $\ \ \rm Hz$
 
${\rm direction \ (C)}, \ \ v_3\text{:} \hspace{0.4cm} f_{\rm D} \ = \ $ { 0. } $\ \ \rm Hz$
Line 56: Line 57:
 
</quiz>
 
</quiz>
  
===Solutions===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; With the direction of travel (A), the receiver approaches the transmitter at an angle $\alpha = 0$. This gives (1) according to the relativistic equation:
+
'''(1)'''&nbsp; With the driving direction&nbsp; $\rm (A)$, the receiver approaches the transmitter at an angle&nbsp; $\alpha = 0$.&nbsp; This gives '''(1)''' according to the relativistic equation:
 
:$$f_{\rm E} = f_{\rm S} \cdot \frac{\sqrt{1 - (v/c)^2}}{1 - v/c }   
 
:$$f_{\rm E} = f_{\rm S} \cdot \frac{\sqrt{1 - (v/c)^2}}{1 - v/c }   
 
  \hspace{0.3cm} \Rightarrow \hspace{0.3cm} f_{\rm D} = f_{\rm E} - f_{\rm S}  = f_{\rm S} \cdot \left [  \frac{\sqrt{1 - (v/c)^2}}{1 - v/c } - 1 \right ]\hspace{0.3cm}
 
  \hspace{0.3cm} \Rightarrow \hspace{0.3cm} f_{\rm D} = f_{\rm E} - f_{\rm S}  = f_{\rm S} \cdot \left [  \frac{\sqrt{1 - (v/c)^2}}{1 - v/c } - 1 \right ]\hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm}{f_{\rm D}}/{f_{\rm S}} =  \frac{\sqrt{1 - (v/c)^2}}{1 - v/c } - 1 \hspace{0.05cm}.$$
 
\Rightarrow \hspace{0.3cm}{f_{\rm D}}/{f_{\rm S}} =  \frac{\sqrt{1 - (v/c)^2}}{1 - v/c } - 1 \hspace{0.05cm}.$$
  
*With $\upsilon_1/c = 0.6$ you get
+
*With&nbsp; $v_1/c = 0.6$&nbsp; you get
 
:$${f_{\rm D}}/{f_{\rm S}} =  \frac{\sqrt{1 - 0.6^2}}{1 - 0.6 } - 1 = \frac{0.8}{0.4 } - 1 \hspace{0.15cm} \underline{ = 1}
 
:$${f_{\rm D}}/{f_{\rm S}} =  \frac{\sqrt{1 - 0.6^2}}{1 - 0.6 } - 1 = \frac{0.8}{0.4 } - 1 \hspace{0.15cm} \underline{ = 1}
 
\hspace{0.3cm}\Rightarrow\hspace{0.3cm} {f_{\rm E}}/{f_{\rm S}} = 2
 
\hspace{0.3cm}\Rightarrow\hspace{0.3cm} {f_{\rm E}}/{f_{\rm S}} = 2
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
*Correspondingly with $\upsilon_2/c = 10^{\rm &ndash;5}$:
+
*Correspondingly with&nbsp; $v_2/c = 10^{\rm -5}$:
 
:$${f_{\rm D}}/{f_{\rm S}} =  \frac{\sqrt{1 - (10^{-5})^2}}{1 - (10^{-5}) } - 1  \approx 1 + 10^{-5} - 1 \hspace{0.15cm} \underline{ = 10^{-5}}
 
:$${f_{\rm D}}/{f_{\rm S}} =  \frac{\sqrt{1 - (10^{-5})^2}}{1 - (10^{-5}) } - 1  \approx 1 + 10^{-5} - 1 \hspace{0.15cm} \underline{ = 10^{-5}}
 
\hspace{0.3cm}\Rightarrow\hspace{0.3cm} {f_{\rm E}}/{f_{\rm S}} = 1.00001
 
\hspace{0.3cm}\Rightarrow\hspace{0.3cm} {f_{\rm E}}/{f_{\rm S}} = 1.00001
Line 74: Line 75:
  
  
'''(2)'''&nbsp; Now the receiver moves away from the transmitter ($\alpha = 180^°$).  
+
'''(2)'''&nbsp; Now the receiver moves away from the transmitter&nbsp; $(\alpha = 180^°)$.  
*The receive frequency $f_{\rm E}$ is lower than the transmit frequency $f_{\rm S}$ and the Doppler frequency $f_{\rm D}$ is negative. With ${\rm cos}(\alpha) = \ &ndash;1$ you now get
+
*The reception frequency&nbsp; $f_{\rm E}$&nbsp; is lower than the transmission frequency&nbsp; $f_{\rm S}$&nbsp; and the Doppler frequency&nbsp; $f_{\rm D}$&nbsp; is negative.&nbsp; With&nbsp; ${\rm cos}(\alpha) = \ -1$&nbsp; you now get
 
:$${f_{\rm D}}/{f_{\rm S}} =  \frac{\sqrt{1 - (v/c)^2}}{1 + v/c } - 1 =
 
:$${f_{\rm D}}/{f_{\rm S}} =  \frac{\sqrt{1 - (v/c)^2}}{1 + v/c } - 1 =
 
\left\{ \begin{array}{c}  \hspace{0.15cm} \underline{  -0.5} \\ \\
 
\left\{ \begin{array}{c}  \hspace{0.15cm} \underline{  -0.5} \\ \\
Line 83: Line 84:
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
*Converting to $f_{\rm E}/f_{\rm S}$ results in:
+
*Converting to&nbsp; $f_{\rm E}/f_{\rm S}$&nbsp; results in:
 
:$${f_{\rm E}}/{f_{\rm S}} =   
 
:$${f_{\rm E}}/{f_{\rm S}} =   
 
\left\{ \begin{array}{c}  \hspace{0.15cm} {  0.5} \\ \\
 
\left\{ \begin{array}{c}  \hspace{0.15cm} {  0.5} \\ \\
Line 98: Line 99:
  
 
This results in the following numerical values:
 
This results in the following numerical values:
* Direction (A), $v_1  = 1.8 \cdot 10^8 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ 0.6} \ \ \ &#8658; \ \ \ f_{\rm E}/f_{\rm S} = 1.6,$
+
* Direction&nbsp; $\rm (A)$,&nbsp; $v_1  = 1.8 \cdot 10^8 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ 0.6} \ \ \ &#8658; \ \ \ f_{\rm E}/f_{\rm S} = 1.6,$
* Direction (A), $v_2  = 3.0 \cdot 10^3 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ 10^{\rm &ndash;5}} \ \ \ &#8658; \ \ \ f_{\rm E}/f_{\rm S} = 1.00001,$
+
* Direction&nbsp; $\rm (A)$,&nbsp; $v_2  = 3.0 \cdot 10^3 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ 10^{\rm &ndash;5}} \ \ \ &#8658; \ \ \ f_{\rm E}/f_{\rm S} = 1.00001,$
* Direction (B), $v_1  = 1.8 \cdot 10^8 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ &ndash;0.6} \ \ \ &#8658; \ \ \ f_{\rm E}/f_{\rm S} = 0.4,$
+
* Direction&nbsp; $\rm (B)$,&nbsp; $v_1  = 1.8 \cdot 10^8 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ &ndash;0.6} \ \ \ &#8658; \ \ \ f_{\rm E}/f_{\rm S} = 0.4,$
* Direction (B), $v_2  = 3.0 \cdot 10^3 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ &ndash;10^{\rm &ndash;5}} \ \ \ &#8658; \ \ \ f_{\rm E}/f_{\rm S} = 0.99999.$
+
* Direction&nbsp; $\rm (B)$,&nbsp; $v_2  = 3.0 \cdot 10^3 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ &ndash;10^{\rm &ndash;5}} \ \ \ &#8658; \ \ \ f_{\rm E}/f_{\rm S} = 0.99999.$
  
  
 
You can tell:  
 
You can tell:  
*For realistic speeds &ndash; including $v \ \approx \ 10000 \ {\rm km/h}$ &ndash; the conventional equation (2) gives the same result as the relativistic equation (1) up to the accuracy of a pocket calculator.  
+
*For realistic speeds &ndash; including&nbsp; $v \ \approx \ 10000 \ {\rm km/h}$&nbsp; &ndash; the conventional equation&nbsp; '''(2)'''&nbsp; gives the same result as the relativistic equation&nbsp; '''(1)'''&nbsp; up to the accuracy of a pocket calculator.  
*With the approximation, the angles $\alpha = 0^°$ and $\alpha = 180^\circ$ result in the same absolute value for the Doppler frequency.  
+
*With the approximation, the angles&nbsp; $\alpha = 0^°$&nbsp; and&nbsp; $\alpha = 180^\circ$&nbsp; result in the same absolute value for the Doppler frequency.  
 
*The approximations differ only in the sign.  
 
*The approximations differ only in the sign.  
*In the relativistic equation this symmetry is no longer present. See subtasks (1) and (2).
+
*In the relativistic equation this symmetry is no longer present.&nbsp; See subtasks '''(1)''' and '''(2)'''.
  
  
  
'''(4)'''&nbsp; Equation (2) leads here to the result:
+
'''(4)'''&nbsp; Equation '''(2)''' leads here to the result:
$$f_{\rm D} = f_{\rm E} - f_{\rm S} = f_{\rm S} \cdot {v_3}/{c} \cdot \cos(\alpha)  
+
:$$f_{\rm D} = f_{\rm E} - f_{\rm S} = f_{\rm S} \cdot {v_3}/{c} \cdot \cos(\alpha)  
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
* The direction of travel (C) is perpendicular ($\alpha = 90^\circ$) to the connection line transmitter&ndash;receiver. In this case, no Doppler shift occurs:  
+
* The driving direction&nbsp; $\rm (C)$&nbsp; is perpendicular&nbsp; $(\alpha = 90^\circ)$&nbsp; to the connection line transmitter&ndash;receiver.&nbsp; In this case, no Doppler shift occurs:  
 
:$$f_{\rm D} \ \ \underline {= \ 0}.$$  
 
:$$f_{\rm D} \ \ \underline {= \ 0}.$$  
* The direction of movement (D) is characterized by $\alpha = \ &ndash;135^\circ$. As a result:
+
* The driving direction&nbsp; $\rm (D)$&nbsp; is characterized by&nbsp; $\alpha = \ &ndash;135^\circ$.&nbsp; As a result:
 
:$$f_{\rm D} =  2 \cdot 10^{9}\,\,{\rm Hz} \cdot  \frac{30\,\,{\rm m/s}}{3 \cdot 10^{8}\,\,{\rm m/s}} \cdot  \cos(-135^{\circ}) \hspace{0.15cm} \underline{ \approx -141\,\,{\rm Hz}}  \hspace{0.05cm}.$$
 
:$$f_{\rm D} =  2 \cdot 10^{9}\,\,{\rm Hz} \cdot  \frac{30\,\,{\rm m/s}}{3 \cdot 10^{8}\,\,{\rm m/s}} \cdot  \cos(-135^{\circ}) \hspace{0.15cm} \underline{ \approx -141\,\,{\rm Hz}}  \hspace{0.05cm}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
[[Category:Exercises for Mobile Communications|^1.3 Rayleigh Fading with Memory^]]
+
[[Category:Mobile Communications: Exercises|^1.3 Rayleigh Fading with Memory^]]

Latest revision as of 16:42, 28 May 2021

Directions of movement  $\rm (A)$, ...

The Doppler effect is the change in the perceived frequency of waves of any kind as the source (transmitter) and observer (receiver) move relative to each other.

Here we always assume a static transmitter, while the receiver can move in four different directions  $\rm (A)$,  $\rm (B)$,  $\rm (C)$  and  $\rm (D)$  (see diagram).

Different speeds are to be investigated:

  • an unrealistically high speed  $v_1 = 0.6 \cdot c = 1.8 \cdot 10^8 \ {\rm m/s}$,
  • the maximum speed  $v_2 = 3 \ {\rm km/s} \ (10800 \ {\rm km/h})$  during unmanned test flight,
  • approximately the maximum speed  $v_3 = 30 \ {\rm m/s} = 108 \ \ \rm km/h$  on federal roads.


The equations given in the theoretical section for the reception frequency are

  • taking into account the theory of relativity (briefly referred to as "relativistic"):
$${\rm equation \hspace{0.15cm}(1):}\hspace{0.2cm}f_{\rm E} = f_{\rm S} \cdot \frac{\sqrt{1 - (v/c)^2}}{1 - v/c \cdot \cos(\alpha)} \hspace{0.05cm},$$
  • without consideration of relativistic properties (referred to as "conventional"):
$${\rm equation \hspace{0.15cm}(2):}\hspace{0.2cm}f_{\rm E} = f_{\rm S} \cdot \big [ 1 + {v}/{c} \cdot \cos(\alpha) \big ] \hspace{0.05cm}.$$



Notes:



Questions

1

Which Doppler frequencies result for the speeds  $v_1$  and  $v_2$  in driving direction  $\rm (A)$  with equation (1)?

$v_1\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S} \ = \ $

$v_2\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S} \ = \ $

$\cdot \ 10^{-5}$

2

Which Doppler frequencies are obtained for the opposite driving direction  $\rm (B)$  with equation (1).

$v_1\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S} \ = \ $

$v_1\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S} \ = \ $

$\cdot \ 10^{-5}$

3

Which Doppler frequencies are obtained under otherwise identical conditions with equation (2)?

${\rm direction \ (A)}, \ \ v_1\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S}\ = \ $

$\hspace{2.96cm} v_2\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S}\ = \ $

$\cdot \ 10^{\rm –5}$
${\rm direction \ (B)}, \ \ v_1\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S}\ = \ $

$\hspace{2.96cm} v_2\text{:} \hspace{0.4cm} f_{\rm D}/f_{\rm S}\ = \ $

$\cdot \ 10^{\rm –5}$

4

Let $f_{\rm S} = 2 \ \rm GHz$.  Which Doppler frequencies result for the driving direction  $\rm (C)$  and  $\rm (D)$  with  equation (2)?

${\rm direction \ (C)}, \ \ v_3\text{:} \hspace{0.4cm} f_{\rm D} \ = \ $

$\ \ \rm Hz$
${\rm direction \ (D)}, \ \ v_3\text{:} \hspace{0.4cm} f_{\rm D} \ = \ $

$\ \ \ \rm Hz$


Solution

(1)  With the driving direction  $\rm (A)$, the receiver approaches the transmitter at an angle  $\alpha = 0$.  This gives (1) according to the relativistic equation:

$$f_{\rm E} = f_{\rm S} \cdot \frac{\sqrt{1 - (v/c)^2}}{1 - v/c } \hspace{0.3cm} \Rightarrow \hspace{0.3cm} f_{\rm D} = f_{\rm E} - f_{\rm S} = f_{\rm S} \cdot \left [ \frac{\sqrt{1 - (v/c)^2}}{1 - v/c } - 1 \right ]\hspace{0.3cm} \Rightarrow \hspace{0.3cm}{f_{\rm D}}/{f_{\rm S}} = \frac{\sqrt{1 - (v/c)^2}}{1 - v/c } - 1 \hspace{0.05cm}.$$
  • With  $v_1/c = 0.6$  you get
$${f_{\rm D}}/{f_{\rm S}} = \frac{\sqrt{1 - 0.6^2}}{1 - 0.6 } - 1 = \frac{0.8}{0.4 } - 1 \hspace{0.15cm} \underline{ = 1} \hspace{0.3cm}\Rightarrow\hspace{0.3cm} {f_{\rm E}}/{f_{\rm S}} = 2 \hspace{0.05cm}.$$
  • Correspondingly with  $v_2/c = 10^{\rm -5}$:
$${f_{\rm D}}/{f_{\rm S}} = \frac{\sqrt{1 - (10^{-5})^2}}{1 - (10^{-5}) } - 1 \approx 1 + 10^{-5} - 1 \hspace{0.15cm} \underline{ = 10^{-5}} \hspace{0.3cm}\Rightarrow\hspace{0.3cm} {f_{\rm E}}/{f_{\rm S}} = 1.00001 \hspace{0.05cm}.$$


(2)  Now the receiver moves away from the transmitter  $(\alpha = 180^°)$.

  • The reception frequency  $f_{\rm E}$  is lower than the transmission frequency  $f_{\rm S}$  and the Doppler frequency  $f_{\rm D}$  is negative.  With  ${\rm cos}(\alpha) = \ -1$  you now get
$${f_{\rm D}}/{f_{\rm S}} = \frac{\sqrt{1 - (v/c)^2}}{1 + v/c } - 1 = \left\{ \begin{array}{c} \hspace{0.15cm} \underline{ -0.5} \\ \\ \hspace{0.15cm} \underline{ -10^{-5}} \end{array} \right.\quad \begin{array}{*{1}c} \hspace{-0.2cm}{\rm f\ddot{u}r}\hspace{0.15cm} v_1/c = 0.6 \\ \\ {\rm f\ddot{u}r}\hspace{0.15cm} v_2/c = 10^{-5} \\ \end{array} \hspace{0.05cm}.$$
  • Converting to  $f_{\rm E}/f_{\rm S}$  results in:
$${f_{\rm E}}/{f_{\rm S}} = \left\{ \begin{array}{c} \hspace{0.15cm} { 0.5} \\ \\ \hspace{0.15cm} { 0.99999} \end{array} \right.\quad \begin{array}{*{1}c} \hspace{-0.2cm}{\rm f\ddot{u}r}\hspace{0.15cm} v_1/c = 0.6 \\ \\ {\rm f\ddot{u}r}\hspace{0.15cm} v_2/c = 10^{-5} \\ \end{array} \hspace{0.05cm}.$$


(3)  The following equations apply here:

$$f_{\rm E} = f_{\rm S} \cdot \left [ 1 + {v}/{c} \cdot \cos(\alpha) \right ] \Rightarrow \hspace{0.3cm}{f_{\rm D}}/{f_{\rm S}} = {v}/{c} \cdot \cos(\alpha) \hspace{0.05cm}.$$

This results in the following numerical values:

  • Direction  $\rm (A)$,  $v_1 = 1.8 \cdot 10^8 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ 0.6} \ \ \ ⇒ \ \ \ f_{\rm E}/f_{\rm S} = 1.6,$
  • Direction  $\rm (A)$,  $v_2 = 3.0 \cdot 10^3 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ 10^{\rm –5}} \ \ \ ⇒ \ \ \ f_{\rm E}/f_{\rm S} = 1.00001,$
  • Direction  $\rm (B)$,  $v_1 = 1.8 \cdot 10^8 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ –0.6} \ \ \ ⇒ \ \ \ f_{\rm E}/f_{\rm S} = 0.4,$
  • Direction  $\rm (B)$,  $v_2 = 3.0 \cdot 10^3 \ {\rm m/s}\text{:}\hspace{0.4cm} f_{\rm D}/f_{\rm S} \ \underline {= \ –10^{\rm –5}} \ \ \ ⇒ \ \ \ f_{\rm E}/f_{\rm S} = 0.99999.$


You can tell:

  • For realistic speeds – including  $v \ \approx \ 10000 \ {\rm km/h}$  – the conventional equation  (2)  gives the same result as the relativistic equation  (1)  up to the accuracy of a pocket calculator.
  • With the approximation, the angles  $\alpha = 0^°$  and  $\alpha = 180^\circ$  result in the same absolute value for the Doppler frequency.
  • The approximations differ only in the sign.
  • In the relativistic equation this symmetry is no longer present.  See subtasks (1) and (2).


(4)  Equation (2) leads here to the result:

$$f_{\rm D} = f_{\rm E} - f_{\rm S} = f_{\rm S} \cdot {v_3}/{c} \cdot \cos(\alpha) \hspace{0.05cm}.$$
  • The driving direction  $\rm (C)$  is perpendicular  $(\alpha = 90^\circ)$  to the connection line transmitter–receiver.  In this case, no Doppler shift occurs:
$$f_{\rm D} \ \ \underline {= \ 0}.$$
  • The driving direction  $\rm (D)$  is characterized by  $\alpha = \ –135^\circ$.  As a result:
$$f_{\rm D} = 2 \cdot 10^{9}\,\,{\rm Hz} \cdot \frac{30\,\,{\rm m/s}}{3 \cdot 10^{8}\,\,{\rm m/s}} \cdot \cos(-135^{\circ}) \hspace{0.15cm} \underline{ \approx -141\,\,{\rm Hz}} \hspace{0.05cm}.$$