Difference between revisions of "Aufgaben:Exercise 1.6: Cyclic Redundancy Check"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Beispiele von Nachrichtensystemen/ISDN–Primärmultiplexanschluss }} [[File:|right|frame]] ===Fragebogen=== <quiz display=simp…“)
 
 
(29 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
  
{{quiz-Header|Buchseite=Beispiele von Nachrichtensystemen/ISDN–Primärmultiplexanschluss
+
{{quiz-Header|Buchseite=Examples_of_Communication_Systems/ISDN_Primary_Multiplex_Connection
  
 
}}
 
}}
  
[[File:|right|frame]]
+
[[File:P_ID1626__Bei_A_1_6.png|right|frame|CRC4 checksum formation]]
 +
The synchronization happens at the primary multiplex connection in each case in synchronization channel&nbsp; "$0$"&nbsp;  of each frame:
 +
# For odd time frames&nbsp; (number 1, 3, ... , 15)&nbsp; this transmits the so-called&nbsp; "frame password"&nbsp; with the fixed bit pattern&nbsp; $\rm X001\hspace{0.05cm} 1011$.
 +
# Each even frame&nbsp; (with number 2, 4, ... , 16)&nbsp; on the other hand contains the&nbsp; "message word"&nbsp; $\rm X1DN\hspace{0.05cm}YYYY$.
 +
# Error messages are signaled via the&nbsp; $\rm D$&nbsp; bit and the &nbsp; $\rm N$&nbsp; bit.&nbsp; The four&nbsp; $\rm Y$&nbsp; bits are reserved for service functions.
  
  
===Fragebogen===
+
The&nbsp; $\rm X$&nbsp; bit is obtained in each case by the&nbsp; "CRC4 method",&nbsp; the implementation of which is shown in the diagram:
 +
*From eight input bits each - in the entire exercise the bit sequence&nbsp; "$\rm 1011\hspace{0.05cm} 0110$"&nbsp; is assumed for this purpose - the four check bits&nbsp; $\rm CRC3$, ... , $\rm CRC0$&nbsp; are obtained by modulo-2 additions and shifts,&nbsp; which are added to the input word in this order.
 +
 
 +
*Before the first bit is shifted into the register,&nbsp; all registers are filled with zeros:
 +
:$${\rm CRC3 = CRC2 =CRC1 =CRC0 = 0}\hspace{0.05cm}.$$
 +
*After eight shift clocks,&nbsp; the four registers&nbsp; $\rm CRC3$, ... , $\rm CRC0$&nbsp; contains the CRC4 checksum.
 +
 
 +
 
 +
 
 +
The taps of the shift register are&nbsp; $g_{0} = 1, \ g_{1} = 1, \ g_{2} = 0, \ g_{3} = 0$&nbsp; and&nbsp; $g_{4} = 1$.
 +
*The corresponding generator polynomial is:
 +
:$$G(D) = D^4 + D +1 \hspace{0.05cm}.$$
 +
*The CRC4 checksum on the transmission side is also obtained as the &nbsp; "'''remainder'''" &nbsp; of the polynomial division
 +
:$$(D^{11} +D^{9} +D^{8}+D^{6}+D^{5})/G(D) \hspace{0.05cm}.$$
 +
*The divisor polynomial results from the input sequence and four appended zeros:&nbsp; "$\rm 1011\hspace{0.09cm} 0110\hspace{0.09cm} 0000$".
 +
 
 +
 
 +
The CRC4 check at the receiver according to subtask&nbsp; '''(4)''' &nbsp;can also be represented by a polynomial division.&nbsp; It can be implemented by a shift register structure in a similar way as the CRC4 checksum is obtained at the transmitting end.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
Notes:
 +
 
 +
*The exercise belongs to the chapter&nbsp; [[Examples_of_Communication_Systems/ISDN_Primary_Multiplex_Connection|"ISDN Primary Multiplex Connection"]] .
 +
*To solve the exercise, some basic knowledge of&nbsp; [[Channel_Coding|"Channel Coding"]]&nbsp; is required.
 +
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
 
|type="[]"}
 
- Falsch
 
+ Richtig
 
  
 +
{Which result&nbsp; $E(D)$&nbsp; and which remainder&nbsp; $R(D)$&nbsp; results from the polynomial division
 +
$(D^{11} + D^{9} + D^{8} + D^{6} + D^{5}) : (D^{4} + D + 1)$&nbsp;?
 +
|type="()"}
 +
- $E(D) = D^{5} + D^{3} + 1, \hspace{2.13cm}R(D) = D^{3} + D$,
 +
+ $E(D) = D^{7} + D^{5} + D^{3} + 1, \hspace{1cm}R(D) = D^{3} + D + 1$,
 +
- $E(D) = D^{7} + D^{5} + D^{3} + 1, \hspace{1cm}R(D) = 0$.
  
{Input-Box Frage
+
{What is the CRC checksum in the present case?
 
|type="{}"}
 
|type="{}"}
$ \ = \ $ { 3% } $\ \rm $
+
$\rm CRC0 \ = \ $ { 1 3% }
 +
$\rm CRC1 \ = \ $ { 1 3% }  
 +
$\rm CRC2 \ = \ $ { 0. }
 +
$\rm CRC3 \ = \ $ { 1 3% }
  
 +
{The following bit sequences arrive at the receiver,&nbsp; eight information bits each plus&nbsp; $\text{  (CRC3, CRC2, CRC1,CRC0)}$.&nbsp; <br>What bit sequences indicate that there is no bit error?
 +
|type="[]"}
 +
- $1011 \hspace{0.1cm}0010\hspace{0.08cm} 1011$,
 +
+ $1011 \hspace{0.1cm}0110 \hspace{0.08cm}1011$,
 +
- $1011 \hspace{0.1cm}0110\hspace{0.08cm} 1001$.
  
 +
{Which of the following received bit sequences were falsified during transmission?
 +
|type="[]"}
 +
+ $0000 \hspace{0.1cm}0111 \hspace{0.1cm}0010$,
 +
- $0000 \hspace{0.1cm}1111\hspace{0.1cm} 0010$,
 +
+ $0000\hspace{0.1cm} 1111\hspace{0.1cm} 1010$.
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
'''(1)'''&nbsp;
+
'''(1)'''&nbsp; The&nbsp; <u>Solution 2</u>&nbsp; is correct:
'''(2)'''&nbsp;
+
*Due to the largest numerator exponent&nbsp; $(D^{11})$&nbsp; and the highest denominator exponent&nbsp; $(D^{4})$,&nbsp; the first suggestion&nbsp; $E(D) = D^{5} + D^{3} + 1$&nbsp; can be excluded as the result &nbsp; &rArr; &nbsp; $E(D) = D^{7} + D^{5} + D^{3} + 1$.
'''(3)'''&nbsp;
+
 
'''(4)'''&nbsp;
+
*Modulo-2 multiplication of&nbsp; $E(D)$&nbsp; by the generator polynomial&nbsp; $G(D) = D^{4} + D + 1$&nbsp; yields:
'''(5)'''&nbsp;
+
:$$E(D) \cdot G(D) \ = \ (D^7+ D^5+D^3+1)\cdot (D^4+ D+1) \ = D^{11}+D^8+D^7+D^9+D^6+D^5+D^7+D^4+D^3+D^4+ D+1 \hspace{0.05cm}.$$
'''(6)'''&nbsp;
+
*It must be taken into account here that for modulo-2 calculations $D^{4} + D^{4} = 0$. This results in the following remainder:
'''(7)'''&nbsp;
+
:$$R(D) = D^{11}+D^9+D^8+D^6+D^5- E(D) \cdot G(D) = D^3+D+1 \hspace{0.05cm}.$$
 +
 
 +
 
 +
[[File:EN_Bei_A_1_6b_ML.png|right|frame|Register assignments for CRC4]]
 +
'''(2)'''&nbsp; From the result of subtask&nbsp; '''(1)'''&nbsp; follows:
 +
:$${\rm CRC0 = 1},\hspace{0.2cm}{\rm CRC1 = 1},\hspace{0.2cm}{\rm CRC2 = 0},\hspace{0.2cm}{\rm CRC3 = 1}\hspace{0.05cm}.$$
 +
*The table shows a second way of solution:&nbsp;
 +
 
 +
*It contains the register assignments of the given circuit at times&nbsp; $0$, ... , $8$.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; Only&nbsp; <u>solution 2</u>&nbsp; is correct:
 +
*The receiver divides the polynomial&nbsp; $P(D)$&nbsp; of the received sequence by the generator polynomial&nbsp; $G(D)$.
 +
 +
*If this modulo-2 division returns the remainder&nbsp; $R(D) = 0$,&nbsp; then all&nbsp; $12$&nbsp; bits were transmitted correctly.
 +
 
 +
*This is true for the second solution,&nbsp; as a comparison with subtasks&nbsp; '''(1)'''&nbsp; and&nbsp; '''(2)'''&nbsp; shows.&nbsp; It is valid without remainder:
 +
:$$(D^{11}+D^9+D^8+D^6+D^5+D^3+D+1) : (D^4+ D+1)= D^7+D^5+D^3+1 \hspace{0.05cm}.$$
 +
*In solution 1 the 6th information bit was falsified,&nbsp; in solution 3 the CRC1 bit.
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; <u>Solutions 1 and 3</u> are correct:
 +
[[File:EN_Bei_A_1_6d.png|right|frame|Polynomial division of the three received sequences]]
 +
 
 +
*The diagram illustrates the modulo-2 divisions for the given received sequences in simplified form&nbsp; (with zeros and ones).
 +
 
 +
*You can see that only for sequence 2 the division  is possible without remainder.
 +
 
 +
*In written form, is possible the polynomial divisions are:
 +
$$\ (1) \ \hspace{0.2cm}(D^6+D^5+D^4+1) : (D^4+ D+1)$$
 +
:$$\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\text{remainder:}\hspace{0.15cm}D^3+ D+1\hspace{0.05cm},$$
 +
$$\ (2) \ \hspace{0.2cm}(D^7+D^6+D^5+D^4+1) : (D^4+ D+1)$$
 +
:$$\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\text{remainder:}\hspace{0.15cm}0\hspace{0.05cm},$$
 +
$$\ (3) \ \hspace{0.2cm}(D^7+D^6+D^5+D^4+D^3+1) : (D^4+ D+1)$$
 +
:$$\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\text{remainder:}\hspace{0.15cm}D^3\hspace{0.05cm}.$$
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 40: Line 126:
  
  
[[Category:Aufgaben zu Beispiele von Nachrichtensystemen|^1.3 ISDN–Primärmultiplexanschluss
+
[[Category:Examples of Communication Systems: Exercises|^1.3 ISDN Primary Multiplex Line^]]
^]]
 

Latest revision as of 17:31, 23 January 2023


CRC4 checksum formation

The synchronization happens at the primary multiplex connection in each case in synchronization channel  "$0$"  of each frame:

  1. For odd time frames  (number 1, 3, ... , 15)  this transmits the so-called  "frame password"  with the fixed bit pattern  $\rm X001\hspace{0.05cm} 1011$.
  2. Each even frame  (with number 2, 4, ... , 16)  on the other hand contains the  "message word"  $\rm X1DN\hspace{0.05cm}YYYY$.
  3. Error messages are signaled via the  $\rm D$  bit and the   $\rm N$  bit.  The four  $\rm Y$  bits are reserved for service functions.


The  $\rm X$  bit is obtained in each case by the  "CRC4 method",  the implementation of which is shown in the diagram:

  • From eight input bits each - in the entire exercise the bit sequence  "$\rm 1011\hspace{0.05cm} 0110$"  is assumed for this purpose - the four check bits  $\rm CRC3$, ... , $\rm CRC0$  are obtained by modulo-2 additions and shifts,  which are added to the input word in this order.
  • Before the first bit is shifted into the register,  all registers are filled with zeros:
$${\rm CRC3 = CRC2 =CRC1 =CRC0 = 0}\hspace{0.05cm}.$$
  • After eight shift clocks,  the four registers  $\rm CRC3$, ... , $\rm CRC0$  contains the CRC4 checksum.


The taps of the shift register are  $g_{0} = 1, \ g_{1} = 1, \ g_{2} = 0, \ g_{3} = 0$  and  $g_{4} = 1$.

  • The corresponding generator polynomial is:
$$G(D) = D^4 + D +1 \hspace{0.05cm}.$$
  • The CRC4 checksum on the transmission side is also obtained as the   "remainder"   of the polynomial division
$$(D^{11} +D^{9} +D^{8}+D^{6}+D^{5})/G(D) \hspace{0.05cm}.$$
  • The divisor polynomial results from the input sequence and four appended zeros:  "$\rm 1011\hspace{0.09cm} 0110\hspace{0.09cm} 0000$".


The CRC4 check at the receiver according to subtask  (4)  can also be represented by a polynomial division.  It can be implemented by a shift register structure in a similar way as the CRC4 checksum is obtained at the transmitting end.



Notes:



Questions

1

Which result  $E(D)$  and which remainder  $R(D)$  results from the polynomial division $(D^{11} + D^{9} + D^{8} + D^{6} + D^{5}) : (D^{4} + D + 1)$ ?

$E(D) = D^{5} + D^{3} + 1, \hspace{2.13cm}R(D) = D^{3} + D$,
$E(D) = D^{7} + D^{5} + D^{3} + 1, \hspace{1cm}R(D) = D^{3} + D + 1$,
$E(D) = D^{7} + D^{5} + D^{3} + 1, \hspace{1cm}R(D) = 0$.

2

What is the CRC checksum in the present case?

$\rm CRC0 \ = \ $

$\rm CRC1 \ = \ $

$\rm CRC2 \ = \ $

$\rm CRC3 \ = \ $

3

The following bit sequences arrive at the receiver,  eight information bits each plus  $\text{ (CRC3, CRC2, CRC1,CRC0)}$. 
What bit sequences indicate that there is no bit error?

$1011 \hspace{0.1cm}0010\hspace{0.08cm} 1011$,
$1011 \hspace{0.1cm}0110 \hspace{0.08cm}1011$,
$1011 \hspace{0.1cm}0110\hspace{0.08cm} 1001$.

4

Which of the following received bit sequences were falsified during transmission?

$0000 \hspace{0.1cm}0111 \hspace{0.1cm}0010$,
$0000 \hspace{0.1cm}1111\hspace{0.1cm} 0010$,
$0000\hspace{0.1cm} 1111\hspace{0.1cm} 1010$.


Solution

(1)  The  Solution 2  is correct:

  • Due to the largest numerator exponent  $(D^{11})$  and the highest denominator exponent  $(D^{4})$,  the first suggestion  $E(D) = D^{5} + D^{3} + 1$  can be excluded as the result   ⇒   $E(D) = D^{7} + D^{5} + D^{3} + 1$.
  • Modulo-2 multiplication of  $E(D)$  by the generator polynomial  $G(D) = D^{4} + D + 1$  yields:
$$E(D) \cdot G(D) \ = \ (D^7+ D^5+D^3+1)\cdot (D^4+ D+1) \ = D^{11}+D^8+D^7+D^9+D^6+D^5+D^7+D^4+D^3+D^4+ D+1 \hspace{0.05cm}.$$
  • It must be taken into account here that for modulo-2 calculations $D^{4} + D^{4} = 0$. This results in the following remainder:
$$R(D) = D^{11}+D^9+D^8+D^6+D^5- E(D) \cdot G(D) = D^3+D+1 \hspace{0.05cm}.$$


Register assignments for CRC4

(2)  From the result of subtask  (1)  follows:

$${\rm CRC0 = 1},\hspace{0.2cm}{\rm CRC1 = 1},\hspace{0.2cm}{\rm CRC2 = 0},\hspace{0.2cm}{\rm CRC3 = 1}\hspace{0.05cm}.$$
  • The table shows a second way of solution: 
  • It contains the register assignments of the given circuit at times  $0$, ... , $8$.


(3)  Only  solution 2  is correct:

  • The receiver divides the polynomial  $P(D)$  of the received sequence by the generator polynomial  $G(D)$.
  • If this modulo-2 division returns the remainder  $R(D) = 0$,  then all  $12$  bits were transmitted correctly.
  • This is true for the second solution,  as a comparison with subtasks  (1)  and  (2)  shows.  It is valid without remainder:
$$(D^{11}+D^9+D^8+D^6+D^5+D^3+D+1) : (D^4+ D+1)= D^7+D^5+D^3+1 \hspace{0.05cm}.$$
  • In solution 1 the 6th information bit was falsified,  in solution 3 the CRC1 bit.


(4)  Solutions 1 and 3 are correct:

Polynomial division of the three received sequences
  • The diagram illustrates the modulo-2 divisions for the given received sequences in simplified form  (with zeros and ones).
  • You can see that only for sequence 2 the division is possible without remainder.
  • In written form, is possible the polynomial divisions are:

$$\ (1) \ \hspace{0.2cm}(D^6+D^5+D^4+1) : (D^4+ D+1)$$

$$\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\text{remainder:}\hspace{0.15cm}D^3+ D+1\hspace{0.05cm},$$

$$\ (2) \ \hspace{0.2cm}(D^7+D^6+D^5+D^4+1) : (D^4+ D+1)$$

$$\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\text{remainder:}\hspace{0.15cm}0\hspace{0.05cm},$$

$$\ (3) \ \hspace{0.2cm}(D^7+D^6+D^5+D^4+D^3+1) : (D^4+ D+1)$$

$$\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\text{remainder:}\hspace{0.15cm}D^3\hspace{0.05cm}.$$