Difference between revisions of "Aufgaben:Exercise 1.6Z: Ergodic Probabilities"

From LNTwww
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Markovketten}}
+
{{quiz-Header|Buchseite=Theory_of_Stochastic_Signals/Markov_Chains}}
  
[[File:P_ID452__Sto_Z_1_6.png|right|frame|Binäre Markovkette mit  $A$  und  $B$]]
+
[[File:P_ID452__Sto_Z_1_6.png|right|frame|Binary Markov chain with  $A$  and  $B$]]
Wir betrachten eine homogene stationäre Markovkette erster Ordnung mit den Ereignissen  $A$  und  $B$  und den Übergangswahrscheinlichkeiten entsprechend dem nebenstehenden Markovdiagramm:
+
We consider a homogeneous stationary first-order Markov chain with events  $A$  and  $B$  and transition probabilities corresponding to the adjacent Markov diagram:
  
Für die Teilaufgaben  '''(1)'''  bis  '''(4)'''  wird vorausgesetzt:
+
For subtasks  '''(1)'''  to  '''(4)''' , assume:
  
*Nach dem Ereignis  $A$  folgen  $A$  und  $B$  mit gleicher Wahrscheinlichkeit.
+
*Event   $A$  is followed by  $A$  and  $B$  with equal probability.
  
*Nach  $B$  ist das Ereignis  $A$  doppelt so wahrscheinlich wie  $B$.
+
*After  $B$ , event  $A$  is twice as likely as  $B$.
  
  
Ab Teilaufgabe  '''(5)'''  sind  $p$  und  $q$  als freie Parameter zu verstehen, während die Ereigniswahrscheinlichkeiten  ${\rm Pr}(A) = 2/3$  und  ${\rm Pr}(B) = 1/3$  fest vorgegeben sind.
+
From subtask  '''(5)'''  on,  $p$  and  $q$  are free parameters, while the event probabilities  ${\rm Pr}(A) = 2/3$  and  ${\rm Pr}(B) = 1/3$  are fixed.
  
  
Line 20: Line 20:
  
  
 
+
Hints:  
''Hinweise:''
+
*The exercise belongs to the chapter  [[Theory_of_Stochastic_Signals/Markov_Chains|Markov Chains]].
*Die Aufgabe gehört zum  Kapitel  [[Theory_of_Stochastic_Signals/Markovketten|Markovketten]].
 
 
   
 
   
*Sie können Ihre Ergebnisse mit dem interaktiven Applet  [[Applets:Markovketten|Ereigniswahrscheinlichkeiten einer Markovkette 1. Ordnung]]  überprüfen.
+
*You can check your results with the interactive applet  [[Applets:Markovketten|Event probabilities of a 1st order Markov chain]] .
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie groß sind die Übergangswahrscheinlichkeiten&nbsp; $p$&nbsp; und&nbsp; $q$?
+
{What are the transition probabilities&nbsp; $p$&nbsp; and&nbsp; $q$?
 
|type="{}"}
 
|type="{}"}
 
$p \ = \ $  { 0.5 3% }
 
$p \ = \ $  { 0.5 3% }
 
$q \ = \ $ { 0.333 3% }
 
$q \ = \ $ { 0.333 3% }
  
{Berechnen Sie die ergodischen Wahrscheinlichkeiten.
+
{Calculate the ergodic probabilities.
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}(A) \ = \ $ { 0.571 3% }
 
${\rm Pr}(A) \ = \ $ { 0.571 3% }
 
${\rm Pr}(B) \ = \ $ { 0.429 3% }
 
${\rm Pr}(B) \ = \ $ { 0.429 3% }
  
{Wie groß ist die bedingte Wahrscheinlichkeit, dass das Ereignis&nbsp; $B$&nbsp; auftritt, wenn zwei Takte vorher das Ereignis&nbsp; $A$&nbsp; aufgetreten ist?
+
{What is the conditional probability that event&nbsp; $B$&nbsp; occurs if event&nbsp; $A$&nbsp; occurred two bars before?
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}(B_{\nu}\hspace{0.05cm}|\hspace{0.05cm}A_{\nu-2})\ = \ $ { 0.417 3% }
 
${\rm Pr}(B_{\nu}\hspace{0.05cm}|\hspace{0.05cm}A_{\nu-2})\ = \ $ { 0.417 3% }
  
{Wie groß ist die Rückschlusswahrscheinlichkeit, dass zwei Takte vorher das Ereignis&nbsp; $A$&nbsp; aufgetreten ist, wenn aktuell&nbsp; $B$&nbsp; auftritt?
+
{What is the inferential probability that event&nbsp; $A$&nbsp; occurred two bars before when event&nbsp; $B$&nbsp; currently occurs?
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}(A_{\nu-2}\hspace{0.05cm}|\hspace{0.05cm}B_{\nu})\ = \ $ { 0.556 3% }
 
${\rm Pr}(A_{\nu-2}\hspace{0.05cm}|\hspace{0.05cm}B_{\nu})\ = \ $ { 0.556 3% }
  
{Es gelte nun&nbsp; $p = 1/2$&nbsp; und&nbsp; ${\rm Pr}(A) = 2/3$.&nbsp; Welcher Wert ergibt sich für&nbsp; $q$?
+
{Let now&nbsp; $p = 1/2$&nbsp; and&nbsp; ${\rm Pr}(A) = 2/3$.&nbsp; Which value results for&nbsp; $q$?
 
|type="{}"}
 
|type="{}"}
 
$q\ = \ $ { 0. }
 
$q\ = \ $ { 0. }
  
{Wie muss man die Parameter wählen, damit die Folgenelemente der Markovkette statistisch unabhängig sind und zusätzlich&nbsp; ${\rm Pr}(A) = 2/3$&nbsp; gilt?
+
{How must the parameters be chosen so that the sequence elements of the Markov chain are statistically independent and additionally&nbsp; ${\rm Pr}(A) = 2/3$&nbsp; gilt?
 
|type="{}"}
 
|type="{}"}
 
$p \ = \ $ { 0.667 3% }
 
$p \ = \ $ { 0.667 3% }
Line 61: Line 60:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Gemäß der Angabe gilt &nbsp; $p = 1 - p$ &nbsp; &rArr; &nbsp; $\underline{p =0.500}$&nbsp; und&nbsp; $q = (1 - q)/2$, &nbsp; &rArr; &nbsp; $\underline{q =0.333}$.
+
'''(1)'''&nbsp; According to the instruction, &nbsp; $p = 1 - p$ &nbsp; &rArr; &nbsp; $\underline{p =0.500}$&nbsp; and&nbsp; $q = (1 - q)/2$, &nbsp; &rArr; &nbsp; $\underline{q =0.333}$ holds.
  
  
  
'''(2)'''&nbsp; F&uuml;r die Ereigniswahrscheinlichkeit von&nbsp; $A$&nbsp; gilt:
+
'''(2)'''&nbsp; For the event probability of&nbsp; $A$&nbsp; holds:
 
:$${\rm Pr}(A) = \frac{{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B)}{{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B)+{\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A)} = \frac{1-q}{1-q+1-p} = \frac{2/3}{2/3 + 1/2}= \frac{4}{7}  \hspace{0.15cm}\underline {\approx0.571}.$$
 
:$${\rm Pr}(A) = \frac{{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B)}{{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B)+{\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A)} = \frac{1-q}{1-q+1-p} = \frac{2/3}{2/3 + 1/2}= \frac{4}{7}  \hspace{0.15cm}\underline {\approx0.571}.$$
*Damit ergibt sich&nbsp; ${\rm Pr}(B)= 1 - {\rm Pr}(A) = 3/7 \hspace{0.15cm}\underline {\approx 0.429}$.
+
*This gives&nbsp; ${\rm Pr}(B)= 1 - {\rm Pr}(A) = 3/7 \hspace{0.15cm}\underline {\approx 0.429}$.
  
  
  
  
'''(3)'''&nbsp; &Uuml;ber den Zeitpunkt&nbsp; $\nu-1$&nbsp; ist keine Aussage getroffen.&nbsp;  
+
'''(3)'''&nbsp; No statement is made about the time&nbsp; $\nu-1$&nbsp;.&nbsp;  
*Zu diesem Zeitpunkt kann&nbsp;  $A$&nbsp; oder&nbsp; $B$&nbsp; aufgetreten sein. Deshalb gilt:
+
*At this time&nbsp;  $A$&nbsp; or&nbsp; $B$&nbsp; may have occurred. Therefore holds:
 
:$${\rm Pr}(B_{\nu} \hspace{0.05cm} | \hspace{0.05cm}A_{\nu -2}) = {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A) \hspace{0.05cm} \cdot \hspace{0.05cm}{\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) \hspace{0.15cm} +\hspace{0.15cm} {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) \hspace{0.05cm} \cdot \hspace{0.05cm}{\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}B) = p \hspace{0.1cm}  \cdot \hspace{0.1cm}  (1-p) +  q \hspace{0.1cm}  \cdot \hspace{0.1cm}  (1-p)
 
:$${\rm Pr}(B_{\nu} \hspace{0.05cm} | \hspace{0.05cm}A_{\nu -2}) = {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A) \hspace{0.05cm} \cdot \hspace{0.05cm}{\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) \hspace{0.15cm} +\hspace{0.15cm} {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) \hspace{0.05cm} \cdot \hspace{0.05cm}{\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}B) = p \hspace{0.1cm}  \cdot \hspace{0.1cm}  (1-p) +  q \hspace{0.1cm}  \cdot \hspace{0.1cm}  (1-p)
 
= {5}/{12}  \hspace{0.15cm}\underline {\approx 0.417}.$$
 
= {5}/{12}  \hspace{0.15cm}\underline {\approx 0.417}.$$
Line 81: Line 80:
  
  
'''(4)'''&nbsp; Nach dem Satz von Bayes gilt:
+
'''(4)'''&nbsp; According to Bayes' theorem:
 
:$${\rm Pr}(A_{\nu -2} \hspace{0.05cm} | \hspace{0.05cm}B_{\nu}) = \frac{{\rm Pr}(B_{\nu} \hspace{0.05cm} | \hspace{0.05cm}A_{\nu -2}) \cdot {\rm Pr}(A_{\nu -2} ) }{{\rm Pr}(B_{\nu}) } =  \frac{5/12 \cdot 4/7 }{3/7 }
 
:$${\rm Pr}(A_{\nu -2} \hspace{0.05cm} | \hspace{0.05cm}B_{\nu}) = \frac{{\rm Pr}(B_{\nu} \hspace{0.05cm} | \hspace{0.05cm}A_{\nu -2}) \cdot {\rm Pr}(A_{\nu -2} ) }{{\rm Pr}(B_{\nu}) } =  \frac{5/12 \cdot 4/7 }{3/7 }
 
= {5}/{9}  \hspace{0.15cm}\underline {\approx 0.556}.$$
 
= {5}/{9}  \hspace{0.15cm}\underline {\approx 0.556}.$$
''Begründung:''
+
''Reasoning:''
*Die Wahrscheinlichkeit&nbsp; ${\rm Pr}(B_{\nu}\hspace{0.05cm}|\hspace{0.05cm}A_{\nu-2})= 5/12$&nbsp; wurde bereits im Unterpunkt&nbsp; '''(3)'''&nbsp; berechnet.
+
*The probability&nbsp; ${\rm Pr}(B_{\nu}\hspace{0.05cm}|\hspace{0.05cm}A_{\nu-2})= 5/12$&nbsp; has already been calculated in subsection&nbsp; '''(3)'''&nbsp;.
*Aufgrund der Stationarit&auml;t gilt&nbsp; ${\rm Pr}(A_{\nu-2})= {\rm Pr}(A) = 4/7$&nbsp; und&nbsp; ${\rm Pr}(B_{\nu})= {\rm Pr}(B) = 3/7$.  
+
*Due to stationarity,&nbsp; ${\rm Pr}(A_{\nu-2})= {\rm Pr}(A) = 4/7$&nbsp; and&nbsp; ${\rm Pr}(B_{\nu})= {\rm Pr}(B) = 3/7$ holds.  
*Damit erh&auml;lt man f&uuml;r die gesuchte R&uuml;ckschlusswahrscheinlichkeit nach obiger Gleichung den Wert&nbsp; $5/9$.
+
*Thus, the value of&nbsp; $5/9$ is obtained for the sought inference probability according to the above equation..
  
  
  
'''(5)'''&nbsp; Entsprechend der Teilaufgabe&nbsp; '''(2)'''&nbsp; gilt mit&nbsp; ${p =1/2}$&nbsp; für die Wahrscheinlichkeit von&nbsp; $A$&nbsp; allgemein:
+
'''(5)'''&nbsp; According to subtask&nbsp; '''(2)'''&nbsp;, with&nbsp; ${p =1/2}$&nbsp; for the probability of&nbsp; $A$&nbsp; in general:
 
:$${\rm Pr}(A) = \frac{1-q}{1.5 -q}.$$
 
:$${\rm Pr}(A) = \frac{1-q}{1.5 -q}.$$
*Aus&nbsp; $ {\rm Pr}(A) = 2/3$&nbsp; folgt somit&nbsp; $\underline{q =0}$.
+
*Thus from&nbsp; $ {\rm Pr}(A) = 2/3$&nbsp; follows&nbsp; $\underline{q =0}$.
  
  
  
'''(6)'''&nbsp; Im Fall der statistischen Unabh&auml;ngigkeit muss beispielsweise gelten:
+
'''(6)'''&nbsp; In the case of statistical independence, for example, it must hold:
 
:$${{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A)} = {{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B)} = {{\rm Pr}(A)}.$$
 
:$${{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A)} = {{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B)} = {{\rm Pr}(A)}.$$
*Daraus folgt &nbsp;$p = {\rm Pr}(A)  \hspace{0.15cm}\underline {= 2/3}$&nbsp; und dementsprechend &nbsp;$q = 1-p  \hspace{0.15cm}\underline {= 1/3}$.
+
*From this follows &nbsp;$p = {\rm Pr}(A)  \hspace{0.15cm}\underline {= 2/3}$&nbsp; and accordingly &nbsp;$q = 1-p  \hspace{0.15cm}\underline {= 1/3}$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 15:08, 29 November 2021

Binary Markov chain with  $A$  and  $B$

We consider a homogeneous stationary first-order Markov chain with events  $A$  and  $B$  and transition probabilities corresponding to the adjacent Markov diagram:

For subtasks  (1)  to  (4) , assume:

  • Event   $A$  is followed by  $A$  and  $B$  with equal probability.
  • After  $B$ , event  $A$  is twice as likely as  $B$.


From subtask  (5)  on,  $p$  and  $q$  are free parameters, while the event probabilities  ${\rm Pr}(A) = 2/3$  and  ${\rm Pr}(B) = 1/3$  are fixed.




Hints:


Questions

1

What are the transition probabilities  $p$  and  $q$?

$p \ = \ $

$q \ = \ $

2

Calculate the ergodic probabilities.

${\rm Pr}(A) \ = \ $

${\rm Pr}(B) \ = \ $

3

What is the conditional probability that event  $B$  occurs if event  $A$  occurred two bars before?

${\rm Pr}(B_{\nu}\hspace{0.05cm}|\hspace{0.05cm}A_{\nu-2})\ = \ $

4

What is the inferential probability that event  $A$  occurred two bars before when event  $B$  currently occurs?

${\rm Pr}(A_{\nu-2}\hspace{0.05cm}|\hspace{0.05cm}B_{\nu})\ = \ $

5

Let now  $p = 1/2$  and  ${\rm Pr}(A) = 2/3$.  Which value results for  $q$?

$q\ = \ $

6

How must the parameters be chosen so that the sequence elements of the Markov chain are statistically independent and additionally  ${\rm Pr}(A) = 2/3$  gilt?

$p \ = \ $

$q \ = \ $


Solution

(1)  According to the instruction,   $p = 1 - p$   ⇒   $\underline{p =0.500}$  and  $q = (1 - q)/2$,   ⇒   $\underline{q =0.333}$ holds.


(2)  For the event probability of  $A$  holds:

$${\rm Pr}(A) = \frac{{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B)}{{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B)+{\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A)} = \frac{1-q}{1-q+1-p} = \frac{2/3}{2/3 + 1/2}= \frac{4}{7} \hspace{0.15cm}\underline {\approx0.571}.$$
  • This gives  ${\rm Pr}(B)= 1 - {\rm Pr}(A) = 3/7 \hspace{0.15cm}\underline {\approx 0.429}$.



(3)  No statement is made about the time  $\nu-1$ . 

  • At this time  $A$  or  $B$  may have occurred. Therefore holds:
$${\rm Pr}(B_{\nu} \hspace{0.05cm} | \hspace{0.05cm}A_{\nu -2}) = {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A) \hspace{0.05cm} \cdot \hspace{0.05cm}{\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) \hspace{0.15cm} +\hspace{0.15cm} {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) \hspace{0.05cm} \cdot \hspace{0.05cm}{\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}B) = p \hspace{0.1cm} \cdot \hspace{0.1cm} (1-p) + q \hspace{0.1cm} \cdot \hspace{0.1cm} (1-p) = {5}/{12} \hspace{0.15cm}\underline {\approx 0.417}.$$


(4)  According to Bayes' theorem:

$${\rm Pr}(A_{\nu -2} \hspace{0.05cm} | \hspace{0.05cm}B_{\nu}) = \frac{{\rm Pr}(B_{\nu} \hspace{0.05cm} | \hspace{0.05cm}A_{\nu -2}) \cdot {\rm Pr}(A_{\nu -2} ) }{{\rm Pr}(B_{\nu}) } = \frac{5/12 \cdot 4/7 }{3/7 } = {5}/{9} \hspace{0.15cm}\underline {\approx 0.556}.$$

Reasoning:

  • The probability  ${\rm Pr}(B_{\nu}\hspace{0.05cm}|\hspace{0.05cm}A_{\nu-2})= 5/12$  has already been calculated in subsection  (3) .
  • Due to stationarity,  ${\rm Pr}(A_{\nu-2})= {\rm Pr}(A) = 4/7$  and  ${\rm Pr}(B_{\nu})= {\rm Pr}(B) = 3/7$ holds.
  • Thus, the value of  $5/9$ is obtained for the sought inference probability according to the above equation..


(5)  According to subtask  (2) , with  ${p =1/2}$  for the probability of  $A$  in general:

$${\rm Pr}(A) = \frac{1-q}{1.5 -q}.$$
  • Thus from  $ {\rm Pr}(A) = 2/3$  follows  $\underline{q =0}$.


(6)  In the case of statistical independence, for example, it must hold:

$${{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A)} = {{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B)} = {{\rm Pr}(A)}.$$
  • From this follows  $p = {\rm Pr}(A) \hspace{0.15cm}\underline {= 2/3}$  and accordingly  $q = 1-p \hspace{0.15cm}\underline {= 1/3}$.