Difference between revisions of "Aufgaben:Exercise 1.7: System Efficiencies"

From LNTwww
m (Text replacement - "”" to """)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Optimierung der Basisbandübertragungssysteme
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Optimization_of_Baseband_Transmission_Systems
 
}}
 
}}
  
  
[[File:P_ID1294__Dig_A_1_7.png|right|frame|Sendegrundimpuls "Trapez" ]]
+
[[File:P_ID1294__Dig_A_1_7.png|right|frame|Basic transmission pulse "trapezoid" ]]
Der Empfänger eines binären Nachrichtenübertragungssystems mit Symboldauer  $T$  besteht aus einem Integrator, der durch die Impulsantwort
+
The receiver of a binary message transmission system with symbol duration  $T$  consists of an integrator, which is represented by the impulse response
 
:$$h_{\rm E}(t)  =  \left\{ \begin{array}{c} 1/T  \\
 
:$$h_{\rm E}(t)  =  \left\{ \begin{array}{c} 1/T  \\
 
  0 \\  \end{array} \right.\quad
 
  0 \\  \end{array} \right.\quad
\begin{array}{*{1}c} {\rm{f\ddot{u}r}}
+
\begin{array}{*{1}c} {\rm{for}}
\\  {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c}
+
\\  {\rm{for}} \\ \end{array}\begin{array}{*{20}c}
 
\hspace{0.05cm}|t| < T/2 \hspace{0.05cm}, \\
 
\hspace{0.05cm}|t| < T/2 \hspace{0.05cm}, \\
 
  |t| > T/2 \\
 
  |t| > T/2 \\
 
\end{array}$$
 
\end{array}$$
beschreibbar ist. Danach folgt ein Schwellenwertentscheider mit optimalen Parametern.
+
This is followed by a threshold decision with optimal parameters.
  
Der Sendegrundimpuls &nbsp;$g_{s}(t)$&nbsp; gemäß der Grafik ist im Allgemeinen trapezförmig und wird durch die Zeit &nbsp;$T_{1}$&nbsp; parametrisiert:
+
The basic transmission pulse &nbsp;$g_{s}(t)$&nbsp; according to the diagram is generally trapezoidal and is parameterized by the time &nbsp;$T_{1}$:&nbsp;  
*Für &nbsp;$T_{1} = 0$&nbsp; ergibt sich ein Dreieckimpuls, für &nbsp;$T_{1} = T$&nbsp; das NRZ–Rechteck.  
+
*For &nbsp;$T_{1} = 0$&nbsp; the result is a triangular pulse, for &nbsp;$T_{1} = T$&nbsp; the NRZ rectangle.
*Die absolute Impulsdauer &nbsp;$T_{\rm S}$&nbsp; ist stets gleich der Symboldauer &nbsp;$T$, also dem Abstand zweier Sendeimpulse.
+
*The absolute pulse duration &nbsp;$T_{\rm S}$&nbsp; is always equal to the symbol duration &nbsp;$T$, i.e. the distance between two transmission pulses.
  
  
Das Signal–zu–Rausch–Leistungsverhältnis (SNR) vor dem Schwellenwertentscheider kann unter der Voraussetzung, dass keine Impulsinterferenzen auftreten, wie folgt berechnet werden:
+
The signal-to-noise power ratio (SNR) before the threshold decision can be calculated as follows, assuming no intersymbol interfering:
 
:$$\rho_d = {g_0^2}/{\sigma_d^2}\hspace{0.05cm}.$$
 
:$$\rho_d = {g_0^2}/{\sigma_d^2}\hspace{0.05cm}.$$
Hierbei ist &nbsp;$g_{0} = g_{d}(t = 0)$&nbsp; der Maximalwert des Detektionsgrundimpulses und
+
Here, &nbsp;$g_{0} = g_{d}(t = 0)$&nbsp; is the maximum value of the basic transmitter pulse and
 
:$$\sigma_d^2 = {N_0}/{2} \cdot \int_{-\infty}^{+\infty}|h_{\rm E}(t)|^2 \,{\rm d} t = \frac{N_0}{2 \cdot T}$$
 
:$$\sigma_d^2 = {N_0}/{2} \cdot \int_{-\infty}^{+\infty}|h_{\rm E}(t)|^2 \,{\rm d} t = \frac{N_0}{2 \cdot T}$$
die Rauschleistung nach dem Empfangsfilter bei AWGN–Rauschen an seinem Eingang.
+
the noise power after the receiver filter in the presence of AWGN noise at its input.
  
Im Laufe dieser Aufgabe werden folgende Größen verwendet:
+
In the course of this exercise, the following quantities will be used:
*$\rho_{d,\rm\hspace{0.05cm} max | L}$&nbsp; ist das maximale SNR unter der Nebenbedingung der Leistungsbegrenzung.
+
*$\rho_{d,\rm\hspace{0.05cm} max | L}$&nbsp; is the maximum SNR under the constraint of power limitation.
*$\rho_{d,\rm\hspace{0.05cm} max | A}$&nbsp; ist das maximale SNR bei Spitzenwertbegrenzung (Amplitudenbegrenzung).
+
*$\rho_{d,\rm\hspace{0.05cm} max | A}$&nbsp; is the maximum SNR under peak limitation (amplitude limitation).
  
  
Mit diesen Definitionen lassen sich die Systemwirkungsgrade angeben:
+
These definitions can be used to specify the system efficiencies:
 
:$$\eta_{\rm L}  = \ \frac{\rho_d}{\rho_{d, \hspace{0.05cm}{\rm max \hspace{0.05cm}|\hspace{0.05cm}
 
:$$\eta_{\rm L}  = \ \frac{\rho_d}{\rho_{d, \hspace{0.05cm}{\rm max \hspace{0.05cm}|\hspace{0.05cm}
 
  L}}}\hspace{0.05cm},$$
 
  L}}}\hspace{0.05cm},$$
Line 37: Line 37:
 
\hspace{0.05cm} A}}} = {1}/{C_{\rm S}^2}\cdot \eta_{\rm L} \hspace{0.05cm}.$$
 
\hspace{0.05cm} A}}} = {1}/{C_{\rm S}^2}\cdot \eta_{\rm L} \hspace{0.05cm}.$$
  
Hierbei bezeichnet der ''Crestfaktor'' &nbsp;$C_{\rm S}$&nbsp; das Verhältnis zwischen dem Maximalwert und dem Effektivwert (Wurzel aus der Leistung) des Sendesignals &nbsp;$s(t)$.
+
Here, the ''crest factor'' &nbsp;$C_{\rm S}$&nbsp; denotes the ratio between the maximum value and the rms value (root of power) of the transmitted signal &nbsp;$s(t)$.
  
  
Line 44: Line 44:
  
  
''Hinweise:''  
+
''Notes:''  
*Die Aufgabe gehört zum  Kapitel&nbsp;  [[Digital_Signal_Transmission/Optimierung_der_Basisbandübertragungssysteme|Optimierung der Basisbandübertragungssysteme]].
+
*The exercise belongs to the chapter&nbsp;  [[Digital_Signal_Transmission/Optimization_of_Baseband_Transmission_Systems|Optimization of Baseband Transmission Systems]].
 
   
 
   
*Verwenden Sie zur Lösung der Aufgabe folgende Zahlenwerte:
+
*Use the following numerical values to solve the exercise:
 
:$$s_0^2 = 10\,{\rm mW},\hspace{0.2cm}T = 3\,{\rm{ &micro; s}}, \hspace{0.2cm}N_0 = 3 \cdot 10^{-10}\,{\rm W/Hz}\hspace{0.05cm}.$$
 
:$$s_0^2 = 10\,{\rm mW},\hspace{0.2cm}T = 3\,{\rm{ &micro; s}}, \hspace{0.2cm}N_0 = 3 \cdot 10^{-10}\,{\rm W/Hz}\hspace{0.05cm}.$$
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
  
{Berechnen Sie die Impulsenergie &nbsp;$E_{\rm B}$&nbsp; in Abhängigkeit von &nbsp;$T_{1}$. Welche Werte ergeben sich für &nbsp;$T_{1} = 0$ , &nbsp;$T_{1} = T/2$&nbsp; und &nbsp;$T_{1} = T$?
+
{Calculate the pulse energy &nbsp;$E_{\rm B}$&nbsp; as a function of &nbsp;$T_{1}$. What are the values for &nbsp;$T_{1} = 0$ , &nbsp;$T_{1} = T/2$&nbsp; and &nbsp;$T_{1} = T$?
 
|type="{}"}
 
|type="{}"}
 
$T_{1} = 0\text{:} \hspace{0.75cm}  E_{\rm B} \ = \ $ { 1 3% } $\ \cdot 10^{-8} \, \rm Ws$
 
$T_{1} = 0\text{:} \hspace{0.75cm}  E_{\rm B} \ = \ $ { 1 3% } $\ \cdot 10^{-8} \, \rm Ws$
Line 62: Line 62:
 
$T_{1} = T\text{:}\hspace{0.65cm} E_{\rm B} \ = \ $ { 3 3% } $\ \cdot 10^{-8} \, \rm Ws$
 
$T_{1} = T\text{:}\hspace{0.65cm} E_{\rm B} \ = \ $ { 3 3% } $\ \cdot 10^{-8} \, \rm Ws$
  
{Welcher Wert &nbsp;$T_{1}$&nbsp; führt bei Leistungsbegrenzung zum maximal möglichen SNR?
+
{What value &nbsp;$T_{1}$&nbsp; leads to the maximum possible SNR when power is limited?
 
|type="{}"}
 
|type="{}"}
 
$T_{1}/T \ = \ $ { 1 3% }
 
$T_{1}/T \ = \ $ { 1 3% }
  
{Wie groß ist somit das maximale SNR bei Leistungsbegrenzung?
+
{Therefore, what is the maximum SNR with power limitation?
 
|type="{}"}
 
|type="{}"}
 
$\rho_{d,\hspace{0.05cm}\rm max \hspace{0.05cm}|\hspace{0.05cm} L} \ = \ $ { 200 3% }  
 
$\rho_{d,\hspace{0.05cm}\rm max \hspace{0.05cm}|\hspace{0.05cm} L} \ = \ $ { 200 3% }  
  
{Wie groß ist der Detektionsgrundimpuls &nbsp;$g_{d}(t)$&nbsp; in Impulsmitte für &nbsp;$T_{1} = T/2$?
+
{How large is the basic transmitter pulse &nbsp;$g_{d}(t)$&nbsp; in pulse center for &nbsp;$T_{1} = T/2$?
 
|type="{}"}
 
|type="{}"}
 
$g_{0} \ = \ $ { 0.075 3% } $\ \rm \sqrt{W}$
 
$g_{0} \ = \ $ { 0.075 3% } $\ \rm \sqrt{W}$
  
{Berechnen Sie den Systemwirkungsgrad &nbsp;$\eta_{\rm L}$&nbsp; bei Leistungsbegrenzung &nbsp;$(T_{1} = T/2)$.
+
{Calculate the system efficiency &nbsp;$\eta_{\rm L}$&nbsp; when power is limited &nbsp;$(T_{1} = T/2)$.
 
|type="{}"}
 
|type="{}"}
 
$\eta_{\rm L} \ = \ $ { 0.5625 3% }  
 
$\eta_{\rm L} \ = \ $ { 0.5625 3% }  
  
{Berechnen Sie den Crestfaktor &nbsp;$(T_{1} = T/2)$.
+
{Calculate the crest factor &nbsp;$(T_{1} = T/2)$.
 
|type="{}"}
 
|type="{}"}
 
$C_{\rm S} \ = \ $ { 1.225 3% }
 
$C_{\rm S} \ = \ $ { 1.225 3% }
  
{Berechnen Sie den Systemwirkungsgrad bei Spitzenwertbegrenzung &nbsp;$(T_{1} = T/2)$.
+
{Calculate the system efficiency at peak limitation &nbsp;$(T_{1} = T/2)$.
 
|type="{}"}
 
|type="{}"}
 
$\eta_{\rm A} \ = \ $ { 0.375 3% }  
 
$\eta_{\rm A} \ = \ $ { 0.375 3% }  
Line 91: Line 91:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Zur Vereinfachung der Berechnungen setzen wir $T_1' = T_1/2$ und $T_2' = (T – T_1)/2$.  
+
'''(1)'''&nbsp; To simplify the calculations, we set $T_1' = T_1/2$ and $T_2' = (T – T_1)/2$.  
*Damit ergibt sich für die Sendeimpulsenergie:
+
*This gives for the transmitted pulse energy:
 
:$$E_{\rm B} =
 
:$$E_{\rm B} =
 
  \int_{-\infty}^{+\infty}g_s^2(t) \,{\rm d} t  =
 
  \int_{-\infty}^{+\infty}g_s^2(t) \,{\rm d} t  =
Line 100: Line 100:
 
  t\hspace{0.2cm}+ \hspace{0.2cm}2 \cdot \int_{T_1\hspace{0.0cm}'}^{T/2}g_s^2(t) \,{\rm d} t
 
  t\hspace{0.2cm}+ \hspace{0.2cm}2 \cdot \int_{T_1\hspace{0.0cm}'}^{T/2}g_s^2(t) \,{\rm d} t
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
*Entsprechend dieser Aufteilung kann auch geschrieben werden:
+
*According to this division, it can also be written:
 
:$${E_{\rm B}}/{2} = s_0^2 \cdot T_1\hspace{0.0cm}' + E_2
 
:$${E_{\rm B}}/{2} = s_0^2 \cdot T_1\hspace{0.0cm}' + E_2
  \hspace{0.05cm},\hspace{0.3cm}{\rm mit}\hspace{0.3cm}
+
  \hspace{0.05cm},\hspace{0.3cm}{\rm with}\hspace{0.3cm}
 
E_{\rm 2}  = \
 
E_{\rm 2}  = \
 
   \int_{T_1\hspace{0.0cm}'}^{T/2}g_s^2(t) \,{\rm d} t
 
   \int_{T_1\hspace{0.0cm}'}^{T/2}g_s^2(t) \,{\rm d} t
Line 114: Line 114:
 
  \cdot\frac {T_2\hspace{0.0cm}'\hspace{0.02cm}}{3}
 
  \cdot\frac {T_2\hspace{0.0cm}'\hspace{0.02cm}}{3}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
*Eingesetzt in obige Gleichung erhält man:
+
*Substituted into the above equation one obtains:
 
:$${E_{\rm B}}/{2}  = s_0^2  \cdot \frac {T_1}{2}+ s_0^2  \cdot \frac {T-T_1}{2 \cdot
 
:$${E_{\rm B}}/{2}  = s_0^2  \cdot \frac {T_1}{2}+ s_0^2  \cdot \frac {T-T_1}{2 \cdot
 
  3}= s_0^2  \cdot \left [\frac{T}{6} + \frac{T_1}{3}\right ]\hspace{0.3cm}
 
  3}= s_0^2  \cdot \left [\frac{T}{6} + \frac{T_1}{3}\right ]\hspace{0.3cm}
 
\hspace{0.3cm}\Rightarrow E_{\rm B}  = {s_0^2}/{3}\cdot  \left (T + 2 \cdot T_1 \right )\hspace{0.05cm}.$$
 
\hspace{0.3cm}\Rightarrow E_{\rm B}  = {s_0^2}/{3}\cdot  \left (T + 2 \cdot T_1 \right )\hspace{0.05cm}.$$
*Mit den angegebenen Werten ${s_{0}}^{2} = 10 \ \rm mW$ und $T = 3\ \rm &micro; s$ erhält man:
+
*With the given values ${s_{0}}^{2} = 10 \ \rm mW$ and $T = 3\ \rm &micro; s$ we obtain:
 
:$$T_1 = 0\text{:} \hspace{0.75cm} {E_{\rm B}}  = \ 1/3 \cdot{s_0^2 \cdot T}= 1/3 \cdot {10^{-2}\,{\rm W} \cdot 3 \cdot 10^{-6}\,{\rm s}} \hspace{0.1cm}\underline {=  1 \cdot 10^{-8}\,{\rm
 
:$$T_1 = 0\text{:} \hspace{0.75cm} {E_{\rm B}}  = \ 1/3 \cdot{s_0^2 \cdot T}= 1/3 \cdot {10^{-2}\,{\rm W} \cdot 3 \cdot 10^{-6}\,{\rm s}} \hspace{0.1cm}\underline {=  1 \cdot 10^{-8}\,{\rm
 
  Ws}}\hspace{0.05cm},$$
 
  Ws}}\hspace{0.05cm},$$
Line 127: Line 127:
  
  
'''(2)'''&nbsp; Der Systemwirkungsgrad bei Leistungsbegrenzung ist maximal $(\eta_{\rm L} = 1)$, wenn der Sendegrundimpuls $g_{s}(t)$ formgleich mit der Impulsantwort $h_{\rm E}(t)$ ist. Dies trifft hier für den NRZ–Sendeimpuls zu: &nbsp;  $T_1/T \ \underline{= 1}$.
+
'''(2)'''&nbsp; The system efficiency under power limitation is maximum $(\eta_{\rm L} = 1)$, when the basic transmission pulse $g_{s}(t)$ has the same shape as the impulse response $h_{\rm E}(t)$. This is true here for the NRZ transmitted pulse: &nbsp;  $T_1/T \ \underline{= 1}$.
  
  
'''(3)'''&nbsp; Unter der in Teilaufgabe '''(2)''' genannten Bedingung erhält man das maximale SNR:
+
'''(3)'''&nbsp; Under the condition given in question '''(2)''', the maximum SNR is obtained:
 
:$$\rho_{d, \hspace{0.05cm}{\rm max  \hspace{0.05cm}|  \hspace{0.05cm}
 
:$$\rho_{d, \hspace{0.05cm}{\rm max  \hspace{0.05cm}|  \hspace{0.05cm}
 
  L}}= \frac{2 \cdot E_{\rm B}}{N_0} = \frac{2 \cdot 3 \cdot 10^{-8}\,{\rm Ws}}{3 \cdot 10^{-10}\,{\rm
 
  L}}= \frac{2 \cdot E_{\rm B}}{N_0} = \frac{2 \cdot 3 \cdot 10^{-8}\,{\rm Ws}}{3 \cdot 10^{-10}\,{\rm
Line 136: Line 136:
  
  
'''(4)'''&nbsp; Allgemein gilt $g_{d}(t) = g_{s}(t) ∗ h_{\rm E}(t)$. Für $t = 0$ ergibt sich  mit $T_1 = T/2$ hierfür die Trapezfläche:
+
'''(4)'''&nbsp; In general, $g_{d}(t) = g_{s}(t) ∗ h_{\rm E}(t)$. For $t = 0$, $T_1 = T/2$ gives the trapezoidal area for this:
 
:$$g_0 = g_d(t=0) = \frac{1}{T} \cdot \int_{-\infty}^{+\infty}g_s(t) \,{\rm d} t = \frac{T + T_1}{2} \cdot s_0 = 0.75 \cdot 0.1 \cdot \sqrt{\rm W} \hspace{0.1cm}\underline {= 0.075 \,\sqrt{\rm W}} \hspace{0.05cm}.$$
 
:$$g_0 = g_d(t=0) = \frac{1}{T} \cdot \int_{-\infty}^{+\infty}g_s(t) \,{\rm d} t = \frac{T + T_1}{2} \cdot s_0 = 0.75 \cdot 0.1 \cdot \sqrt{\rm W} \hspace{0.1cm}\underline {= 0.075 \,\sqrt{\rm W}} \hspace{0.05cm}.$$
  
  
'''(5)'''&nbsp; Mit $T_1 = T/2$ (trapezförmige Sendeimpulse) erhält man für das Signal–zu–Rausch–Verhältnis:
+
'''(5)'''&nbsp; With $T_1 = T/2$ (trapezoidal transmitted pulses), we obtain for the signal-to-noise ratio:
:$$\rho_d = \frac{g_0^2}{\sigma_d^2}\hspace{0.3cm}{\rm mit}\hspace{0.3cm} g_0^2=0.075^2\, {\rm W},\hspace{0.1cm} \sigma_d^2 = \frac{N_0}{2 \cdot T} = 5 \cdot 10^{-5}\,{\rm W}\hspace{0.3cm}
+
:$$\rho_d = \frac{g_0^2}{\sigma_d^2}\hspace{0.3cm}{\rm with}\hspace{0.3cm} g_0^2=0.075^2\, {\rm W},\hspace{0.1cm} \sigma_d^2 = \frac{N_0}{2 \cdot T} = 5 \cdot 10^{-5}\,{\rm W}\hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm}\rho_d = \frac{0.075^2\, {\rm W}}{5 \cdot 10^{-5}\,{\rm W}} = 112.5 \hspace{0.05cm}.$$
 
\Rightarrow \hspace{0.3cm}\rho_d = \frac{0.075^2\, {\rm W}}{5 \cdot 10^{-5}\,{\rm W}} = 112.5 \hspace{0.05cm}.$$
*Somit ergibt sich für den Systemwirkungsgrad bei Leistungsbegrenzung mit dem Ergebnis aus '''(3)''':
+
*Thus, the system efficiency under power limitation with the result of '''(3)''':
 
:$$\eta_{\rm L} = \frac{\rho_d}{\rho_{d, \hspace{0.05cm}{\rm max \hspace{0.05cm} | \hspace{0.05cm} L}}}= \frac{112.5}{200}\hspace{0.1cm}\underline {= 0.5625 }\hspace{0.05cm}.$$
 
:$$\eta_{\rm L} = \frac{\rho_d}{\rho_{d, \hspace{0.05cm}{\rm max \hspace{0.05cm} | \hspace{0.05cm} L}}}= \frac{112.5}{200}\hspace{0.1cm}\underline {= 0.5625 }\hspace{0.05cm}.$$
*Aufgrund der Fehlanpassung ist $\eta_{\rm L} < 1$.
+
*Due to the mismatch, $\eta_{\rm L} < 1$.
  
  
'''(6)'''&nbsp; Mit dem Maximalwert $s_{0}$ und dem Ergebnis der Teilaufgabe '''(1)''' gilt:
+
'''(6)'''&nbsp; With the maximum value $s_{0}$ and the result of question '''(1)''':
 
:$$s_{\rm eff} = \sqrt{{ E_{\rm B}}/{T}}= \sqrt{{ 2/3 \cdot s_{0}^2}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}C_{\rm S} ={ s_{\rm 0}}/{s_{\rm eff}}= \sqrt{{ 3}/{2}}\hspace{0.1cm}\underline { \approx 1.225}\hspace{0.05cm}.$$
 
:$$s_{\rm eff} = \sqrt{{ E_{\rm B}}/{T}}= \sqrt{{ 2/3 \cdot s_{0}^2}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}C_{\rm S} ={ s_{\rm 0}}/{s_{\rm eff}}= \sqrt{{ 3}/{2}}\hspace{0.1cm}\underline { \approx 1.225}\hspace{0.05cm}.$$
  
  
'''(7)'''&nbsp; Der Systemwirkungsgrad bei Spitzenwertbegrenzung ist kleiner als der bei Leistungsbegrenzung, da hier neben der Fehlanpassung auch das nicht optimale Sendesignal (zu kleine Energie) eine Rolle spielt:
+
'''(7)'''&nbsp; The system efficiency under peak limitation is smaller than that under power limitation, because the non-optimal transmitted signal (too small energy) plays a role here in addition to the mismatch:
 
:$$\eta_{\rm A} = \frac{1}{C_{\rm S}^2}\cdot \eta_{\rm L} = \frac{ 2}{3} \cdot 0.5625 =\hspace{0.1cm}\underline {  0.375} \hspace{0.05cm}.$$
 
:$$\eta_{\rm A} = \frac{1}{C_{\rm S}^2}\cdot \eta_{\rm L} = \frac{ 2}{3} \cdot 0.5625 =\hspace{0.1cm}\underline {  0.375} \hspace{0.05cm}.$$
  

Revision as of 16:13, 18 March 2022


Basic transmission pulse "trapezoid"

The receiver of a binary message transmission system with symbol duration  $T$  consists of an integrator, which is represented by the impulse response

$$h_{\rm E}(t) = \left\{ \begin{array}{c} 1/T \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}c} \hspace{0.05cm}|t| < T/2 \hspace{0.05cm}, \\ |t| > T/2 \\ \end{array}$$

This is followed by a threshold decision with optimal parameters.

The basic transmission pulse  $g_{s}(t)$  according to the diagram is generally trapezoidal and is parameterized by the time  $T_{1}$: 

  • For  $T_{1} = 0$  the result is a triangular pulse, for  $T_{1} = T$  the NRZ rectangle.
  • The absolute pulse duration  $T_{\rm S}$  is always equal to the symbol duration  $T$, i.e. the distance between two transmission pulses.


The signal-to-noise power ratio (SNR) before the threshold decision can be calculated as follows, assuming no intersymbol interfering:

$$\rho_d = {g_0^2}/{\sigma_d^2}\hspace{0.05cm}.$$

Here,  $g_{0} = g_{d}(t = 0)$  is the maximum value of the basic transmitter pulse and

$$\sigma_d^2 = {N_0}/{2} \cdot \int_{-\infty}^{+\infty}|h_{\rm E}(t)|^2 \,{\rm d} t = \frac{N_0}{2 \cdot T}$$

the noise power after the receiver filter in the presence of AWGN noise at its input.

In the course of this exercise, the following quantities will be used:

  • $\rho_{d,\rm\hspace{0.05cm} max | L}$  is the maximum SNR under the constraint of power limitation.
  • $\rho_{d,\rm\hspace{0.05cm} max | A}$  is the maximum SNR under peak limitation (amplitude limitation).


These definitions can be used to specify the system efficiencies:

$$\eta_{\rm L} = \ \frac{\rho_d}{\rho_{d, \hspace{0.05cm}{\rm max \hspace{0.05cm}|\hspace{0.05cm} L}}}\hspace{0.05cm},$$
$$\eta_{\rm A} = \ \frac{\rho_d}{\rho_{d, \hspace{0.05cm}{\rm max\hspace{0.05cm} | \hspace{0.05cm} A}}} = {1}/{C_{\rm S}^2}\cdot \eta_{\rm L} \hspace{0.05cm}.$$

Here, the crest factor  $C_{\rm S}$  denotes the ratio between the maximum value and the rms value (root of power) of the transmitted signal  $s(t)$.




Notes:

  • Use the following numerical values to solve the exercise:
$$s_0^2 = 10\,{\rm mW},\hspace{0.2cm}T = 3\,{\rm{ µ s}}, \hspace{0.2cm}N_0 = 3 \cdot 10^{-10}\,{\rm W/Hz}\hspace{0.05cm}.$$


Questions

1

Calculate the pulse energy  $E_{\rm B}$  as a function of  $T_{1}$. What are the values for  $T_{1} = 0$ ,  $T_{1} = T/2$  and  $T_{1} = T$?

$T_{1} = 0\text{:} \hspace{0.75cm} E_{\rm B} \ = \ $

$\ \cdot 10^{-8} \, \rm Ws$
$T_{1} = T/2\text{:}\hspace{0.2cm} E_{\rm B} \ = \ $

$\ \cdot 10^{-8} \, \rm Ws$
$T_{1} = T\text{:}\hspace{0.65cm} E_{\rm B} \ = \ $

$\ \cdot 10^{-8} \, \rm Ws$

2

What value  $T_{1}$  leads to the maximum possible SNR when power is limited?

$T_{1}/T \ = \ $

3

Therefore, what is the maximum SNR with power limitation?

$\rho_{d,\hspace{0.05cm}\rm max \hspace{0.05cm}|\hspace{0.05cm} L} \ = \ $

4

How large is the basic transmitter pulse  $g_{d}(t)$  in pulse center for  $T_{1} = T/2$?

$g_{0} \ = \ $

$\ \rm \sqrt{W}$

5

Calculate the system efficiency  $\eta_{\rm L}$  when power is limited  $(T_{1} = T/2)$.

$\eta_{\rm L} \ = \ $

6

Calculate the crest factor  $(T_{1} = T/2)$.

$C_{\rm S} \ = \ $

7

Calculate the system efficiency at peak limitation  $(T_{1} = T/2)$.

$\eta_{\rm A} \ = \ $


Solution

(1)  To simplify the calculations, we set $T_1' = T_1/2$ and $T_2' = (T – T_1)/2$.

  • This gives for the transmitted pulse energy:
$$E_{\rm B} = \int_{-\infty}^{+\infty}g_s^2(t) \,{\rm d} t = 2 \cdot \int_{0}^{T_1\hspace{0.0cm}'}g_s^2(t) \,{\rm d} t\hspace{0.2cm}+ \hspace{0.2cm}2 \cdot \int_{T_1\hspace{0.0cm}'}^{T/2}g_s^2(t) \,{\rm d} t \hspace{0.05cm}.$$
  • According to this division, it can also be written:
$${E_{\rm B}}/{2} = s_0^2 \cdot T_1\hspace{0.0cm}' + E_2 \hspace{0.05cm},\hspace{0.3cm}{\rm with}\hspace{0.3cm} E_{\rm 2} = \ \int_{T_1\hspace{0.0cm}'}^{T/2}g_s^2(t) \,{\rm d} t = s_0^2 \cdot \int_{0}^{T_2\hspace{0.0cm}'}\left ( 1 - \frac {t}{T_2\hspace{0.0cm}'}\right )^2 \,{\rm d} t $$
$$\Rightarrow \hspace{0.3cm}E_{\rm 2} = \ s_0^2 \cdot \left [ \int_{0}^{T_2\hspace{0.0cm}'}\,\,{\rm d} t- \frac {2}{T_2\hspace{0.0cm}'} \cdot \int_{0}^{T_2\hspace{0.0cm}'}t \,\,{\rm d} t + \frac {1}{(T_2\hspace{0.0cm}'\hspace{0.02cm})^2} \cdot \int_{0}^{T_2\hspace{0.0cm}'}t^2 \,\,{\rm d} t\right ] = \ s_0^2 \cdot \left [ {T_2\hspace{0.0cm}'} - \frac {2}{T_2\hspace{0.0cm}'} \cdot \frac {(T_2\hspace{0.0cm}'\hspace{0.02cm})^2}{2} + \frac {1}{(T_2\hspace{0.0cm}'\hspace{0.02cm})^2} \cdot \frac {(T_2\hspace{0.0cm}'\hspace{0.02cm})^3}{3}\right ] = s_0^2 \cdot\frac {T_2\hspace{0.0cm}'\hspace{0.02cm}}{3} \hspace{0.05cm}.$$
  • Substituted into the above equation one obtains:
$${E_{\rm B}}/{2} = s_0^2 \cdot \frac {T_1}{2}+ s_0^2 \cdot \frac {T-T_1}{2 \cdot 3}= s_0^2 \cdot \left [\frac{T}{6} + \frac{T_1}{3}\right ]\hspace{0.3cm} \hspace{0.3cm}\Rightarrow E_{\rm B} = {s_0^2}/{3}\cdot \left (T + 2 \cdot T_1 \right )\hspace{0.05cm}.$$
  • With the given values ${s_{0}}^{2} = 10 \ \rm mW$ and $T = 3\ \rm µ s$ we obtain:
$$T_1 = 0\text{:} \hspace{0.75cm} {E_{\rm B}} = \ 1/3 \cdot{s_0^2 \cdot T}= 1/3 \cdot {10^{-2}\,{\rm W} \cdot 3 \cdot 10^{-6}\,{\rm s}} \hspace{0.1cm}\underline {= 1 \cdot 10^{-8}\,{\rm Ws}}\hspace{0.05cm},$$
$$T_1 = T/2\text{:} \hspace{0.2cm} {E_{\rm B}} = \ 2/3 \cdot{ s_0^2 \cdot T}= \hspace{2.6cm}\text{...} \hspace{1.4cm}\hspace{0.1cm}\underline {= 2 \cdot 10^{-8}\,{\rm Ws}} \hspace{0.05cm},$$
$$T_1 = T\text{:} \hspace{0.65cm} {E_{\rm B}} = \ { s_0^2 \cdot T}= \hspace{3.65cm}\text{...} \hspace{1.4cm}\hspace{0.1cm}\underline {= 3 \cdot 10^{-8}\,{\rm Ws}} \hspace{0.05cm}.$$


(2)  The system efficiency under power limitation is maximum $(\eta_{\rm L} = 1)$, when the basic transmission pulse $g_{s}(t)$ has the same shape as the impulse response $h_{\rm E}(t)$. This is true here for the NRZ transmitted pulse:   $T_1/T \ \underline{= 1}$.


(3)  Under the condition given in question (2), the maximum SNR is obtained:

$$\rho_{d, \hspace{0.05cm}{\rm max \hspace{0.05cm}| \hspace{0.05cm} L}}= \frac{2 \cdot E_{\rm B}}{N_0} = \frac{2 \cdot 3 \cdot 10^{-8}\,{\rm Ws}}{3 \cdot 10^{-10}\,{\rm W/Hz}}\hspace{0.1cm}\underline {= 200} \hspace{0.05cm}.$$


(4)  In general, $g_{d}(t) = g_{s}(t) ∗ h_{\rm E}(t)$. For $t = 0$, $T_1 = T/2$ gives the trapezoidal area for this:

$$g_0 = g_d(t=0) = \frac{1}{T} \cdot \int_{-\infty}^{+\infty}g_s(t) \,{\rm d} t = \frac{T + T_1}{2} \cdot s_0 = 0.75 \cdot 0.1 \cdot \sqrt{\rm W} \hspace{0.1cm}\underline {= 0.075 \,\sqrt{\rm W}} \hspace{0.05cm}.$$


(5)  With $T_1 = T/2$ (trapezoidal transmitted pulses), we obtain for the signal-to-noise ratio:

$$\rho_d = \frac{g_0^2}{\sigma_d^2}\hspace{0.3cm}{\rm with}\hspace{0.3cm} g_0^2=0.075^2\, {\rm W},\hspace{0.1cm} \sigma_d^2 = \frac{N_0}{2 \cdot T} = 5 \cdot 10^{-5}\,{\rm W}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}\rho_d = \frac{0.075^2\, {\rm W}}{5 \cdot 10^{-5}\,{\rm W}} = 112.5 \hspace{0.05cm}.$$
  • Thus, the system efficiency under power limitation with the result of (3):
$$\eta_{\rm L} = \frac{\rho_d}{\rho_{d, \hspace{0.05cm}{\rm max \hspace{0.05cm} | \hspace{0.05cm} L}}}= \frac{112.5}{200}\hspace{0.1cm}\underline {= 0.5625 }\hspace{0.05cm}.$$
  • Due to the mismatch, $\eta_{\rm L} < 1$.


(6)  With the maximum value $s_{0}$ and the result of question (1):

$$s_{\rm eff} = \sqrt{{ E_{\rm B}}/{T}}= \sqrt{{ 2/3 \cdot s_{0}^2}} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}C_{\rm S} ={ s_{\rm 0}}/{s_{\rm eff}}= \sqrt{{ 3}/{2}}\hspace{0.1cm}\underline { \approx 1.225}\hspace{0.05cm}.$$


(7)  The system efficiency under peak limitation is smaller than that under power limitation, because the non-optimal transmitted signal (too small energy) plays a role here in addition to the mismatch:

$$\eta_{\rm A} = \frac{1}{C_{\rm S}^2}\cdot \eta_{\rm L} = \frac{ 2}{3} \cdot 0.5625 =\hspace{0.1cm}\underline { 0.375} \hspace{0.05cm}.$$